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Abstract

We investigate the distribution of lengths obtained by intersecting a random geodesic with a
geodesic lamination. We give an explicit formula for the distribution for the case of a maximal
lamination and show that the distribution is independent of the surface and lamination. We
also show how the moments of the distribution are related to the Riemann zeta function.

1 Introduction

Let S be a closed hyperbolic surface and λ a maximal geodesic lamination on S. If we take an
infinite geodesic α on S, then λ∩α decomposes α into geodesic arcs. We consider the distribution
of the lengths of these arcs. We show that for almost every geodesic, the distribution is the same
and we explicitly calculate this distribution.

Let v ∈ T1(S) be a unit tangent vector on S and αv : R → S the geodesic parameterized by arc
length such that v = α′v(0). In the complement of λ, αv is a countable union of open intervals (see
Figure 1). We let

α−1
v (S − λ) = ∪∞j=1Ij

where Ij are open disjoint intervals. We denote the length |Ij | of Ij by lj .

Definition: The length distribution Dλ(v) is a measure on (0,∞) given by

Dλ,t(v) =
1
t

∑

Ii∩[0,t]6=∅
δ(li),

Dλ(v) = lim
t→∞Dλ,t(v)

∗The second author was partially supported by an NSF postdoctoral research fellowship.

1



vα v

λ

Figure 1: Intersection of lamination λ with ray αv in direction v

where δ(x) is the Dirac measure at x and the limit is taken with respect to the weak∗ topology.

The main result is that for almost all vectors v, the distribution Dλ(v) is independent of λ and v
and can be explicitly calculated.

Theorem 1 Let λ be a maximal geodesic lamination. Then there exists a measure M such that
for almost all v ∈ T1(S) with respect to the volume measure on T1(S) we have

Dλ(v) = lim
t→∞Dλ,t(v) = M,

where
dM =

6xdx
π2 sinh2 x

.

We define measure Pλ(v) on (0,∞) similarly by

Pλ,t(v) =
1
t

∑

Ii∩[0,t]6=∅
liδ(li),

Pλ(v) = lim
t→∞Pλ,t(v).

Note that if φ : (0,∞) → R is a continuous function with compact support then

Pλ,t(v)(φ(x)) = Dλ,t(v)(xφ(x)).

Then we obtain the following corollary:

Corollary 2 Let λ be a maximal geodesic lamination. Then for almost all v ∈ T1(S) with respect
to the volume measure on T1(S), the measure Pλ(v) is equal to the probability measure P given by

dP =
6x2dx

π2 sinh2 x
.
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Furthermore the probability measure P has expected value

EP (x) =
9
π2
ζ(3),

and nth moment given by

EP (xn) =
3(n+ 2)!

2nπ2
ζ(n+ 2),

where ζ is the Riemann zeta function.

Before we give a proof of the corollary, let us describe a simple interpretation of the probability
measure P in terms of the geometry of an ideal triangle. Consider picking a random tangent vector
p in an ideal triangle T and let g(p) be the geodesic through p. Then P is the same probability
distribution as the probability distribution of lengths of T ∩ g(p). In particular this corollary gives
a nice description of ζ(3) in terms of the average length of a segment in an ideal triangle.

Proof of corollary: Let φ : (0,∞) → R be a continuous function with compact support. Then
by definition, Pλ,t(αv)(φ(x)) = Dλ,t(v)(xφ(x)). Therefore as xφ(x) is continuous with compact
support, it follows from the definition of the weak∗ topology that Pλ(v)(φ(x)) = Dλ(v)(xφ(x)).
Therefore for almost all v ∈ T1(S),

Pλ(v)(φ(x)) =
∫ ∞

0
xφ(x) d(Dλ(v)) =

∫ ∞

0

6x2φ(x) dx
π2 sinh2 x

.

It follows that for almost all v ∈ T1(S),

d(Pλ(v)) =
6x2 dx

π2 sinh2 x
.

We let P be the measure on (0,∞) with distribution given above. To show that P is a probability
distribution and evaluate its moments, we calculate the integral

∫ ∞

0

6xn dx

π2 sinh2 x

for n ≥ 2. The antiderivative we describe below was found using Mathematica (see [7]).

Let lin(z) be the principal branch of the nth polylog function defined on the complex plane minus
the real ray [1,∞). The power series expansion about 0 is given by

lin(x) =
∞∑

k=1

xk

kn

and has radius of convergence 1.

For n = 0, li0(x) = 1/(1−x), and for n = 1, li1(x) = log(1−x). Also for n > 1, we have convergence
at x = 1 and lin(1) = ζ(n). Taking the derivative of the power series we obtain the relation

li′n(x) =
lin−1(x)

x
.
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Let n be a positive integer greater than 1. We define a function F : (0,∞) → R on the positive
real axis by

F (x) = −
n∑

k=0

n!
k!2n−k−1

xklin−k(e−2x).

We now find the derivative of F . We have for k 6= n

d

dx
xklin−k(e−2x) = kxk−1lin−k(e−2x)− 2xklin−k−1(e−2x).

Also for k = n, as xnli0(e−2x) = xn/(1− e−2x) we have

d

dx
xnli0(e−2x) = nxn−1li0(e−2x)− 2xne−2x

(1− e−2x)2
= nxn−1li0(e−2x)− xn

2 sinh2 x
.

Putting all these derivatives together we have

F ′(x) =
xn

sinh2 x
.

Then ∫ ∞

0

xn dx

sinh2 x
= F (∞)− F (0) = 0−

(
− n!

2n−1
lin(1)

)
=

n!
2n−1

ζ(n).

Therefore as ζ(2) = π2/6 ∫ ∞

0

6x2 dx

π2 sinh2 x
= 1.

Therefore the nth moment of this probability distribution is
∫ ∞

0

6xn+2 dx

π2 sinh2 x
=

3(n+ 2)!
2nπ2

ζ(n+ 2).

In particular, P is a probability measure and has expected value 9
π2 ζ(3).

Given a geodesic current m, (a generalization of a closed geodesic described formally in the next
section), we define a measure Dλ(m) on R+ associated with the intersection of the geodesic current
m with the geodesic lamination λ. We prove the following properties of the function m→ Dλ(m).

Theorem 3 Let µ be the Liouville geodesic current for the closed hyperbolic surface S. Then

1. Dλ(µ) = M , where M is as in Theorem 1.

2. If mi are discrete geodesic currents such that mi → µ then

lim
i→∞

Dλ(mi) = Dλ(µ) = M.

Note that sequences mi as in part 2 above are abundant: Bonahon shows in [1] that for almost any
v ∈ T1(S), such a sequence can be constructed from the geodesic ray αv determined by v (by closing
up long segments). The application of Theorem 3 to this construction is discussed in Corollary 17
below.

4



Acknowledgments

The authors thank the referee for comments and suggestions which greatly shortened and simplified
the paper. The authors also thank Ed Taylor and Curt McMullen for helpful discussions.

2 Geodesic laminations and geodesic currents

Let S be a closed hyperbolic surface. A geodesic lamination is a closed subset of S that is the union
of a disjoint collection of geodesics on S (see [6]). A geodesic lamination λ is maximal if S − λ is a
disjoint collection of ideal triangles.

Let H2 be the hyperbolic plane and G(H2) be the set of oriented geodesics in H2. We take the
upper half plane model for H2 in the Riemann sphere Ĉ. Then the boundary of H2 in Ĉ is
R = R ∪ {∞} and is called the circle at infinity of H2. Identifying an oriented geodesic with its
endpoints, we have that G(H2) = R ×R − Λ where Λ is the diagonal in the product space. We
give G(H2) the subspace topology in R×R.

In general, if X is a topological space, we let C0(X) be the space of continuous functions on X with
compact support. If m is a measure on X we obtain a linear function m : C0(X) → R by defining

m(φ) =
∫

X
φ dm.

The set of non-negative measures onX is denotedM(X). The weak∗ topology onM(X) has basis at
m ∈M(X) given by the sets U(m,φ, ε) = {n ∈M(X)| |n(φ)−m(φ)| < ε} where φ ∈ C0(X), ε > 0.
Thus mi → m if mi(φ) → m(φ) for all φ ∈ C0(X). If A ⊆ X and m ∈ M(X) we define m|A to be
the restriction of the measure m to A.

Let S = H2/Γ be a closed hyperbolic surface, and α a closed geodesic in S of length l(α). Then the
preimage of α in G(H2) is a Γ-invariant discrete subset. If α is primitive, we obtain a Γ invariant
measure m(α) on G(H2), by taking the Dirac measure on this set. If α is not primitive and α = βk,
where β is a primitive closed geodesic, we define m(α) = km(β).

This measure is an example of a geodesic current.

Definition: A geodesic current on S = H2/Γ is a Γ-invariant positive measure on G(H2). The
space of geodesic currents on S is denoted C(S) and given the weak∗ topology.

If a geodesic current m is a positive real multiple of m(α) for some closed geodesic α in S, then m
is called a discrete geodesic current. If m is a discrete geodesic current with m = λm(α), λ ∈ R+,
we define the length l(m) of m by l(m) = λl(α) where l(α) is the length of the closed geodesic α.
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Another geodesic current is the Liouville measure given by

µ([a, b]× [c, d]) =
∣∣∣∣log

∣∣∣∣
(a− c)(b− d)
(a− d)(b− c)

∣∣∣∣
∣∣∣∣ .

By the invariance of the cross-ratio under Möbius transformations, µ is invariant under the group
of isometries of H2. In particular µ is invariant under the Fuchsian group Γ and is therefore a
geodesic current. In fact, µ is the unique measure on G(H2) (up to constant multiple) that is
invariant under the full Möbius group. Differentially µ is given by

dµ(a,b) =
dxdy

|a− b|2

where dxdy is the standard area measure on R×R. For a full description of geodesic currents and
their properties see Bonahon [1].

The following lemmas show that geodesic currents are a natural extension of closed geodesics.

Lemma 4 (Bonahon [1]) The set of discrete geodesic currents is dense in C(S).

Lemma 5 (Bonahon [1]) There exists a continuous function l : C(S) → R+ such that l(m(α)) =
l(α) for all closed geodesics α, and l(km) = k l(m), for all k ∈ R+,m ∈ C(S).

3 Ergodic theory

Let S be a closed hyperbolic surface and λ a maximal lamination in S. Let T1(S) be the unit
tangent bundle of S and Ω the standard volume measure on T1(S). We normalize Ω to obtain the
unit volume measure V on T1(S). Then as Ω(T1(S)) = 2π Area(S) = 4π2|χ(S)|,

V =
Ω

4π2|χ(S)| .

As before, if v ∈ T1(S), we let αv : R → S be the geodesic in S parameterized by arc length
such that α′v(0) = v. Then α−1

v (S − λ) = ∪iIi with Ii having length li. We define a length
function Lλ : T1(S) → [0,∞] where Lλ(v) = lj if αv(0) ∈ Ij , and otherwise Lλ(v) = 0. Then
(Lλ)∗V ∈M(R+) is defined by ((Lλ)∗V )(φ) = V (φ ◦ L).

Theorem 6 For almost all v ∈ T1(S) (wrt Ω), limt→∞ Pλ,t(v) exists and satisfies

lim
t→∞Pλ,t(v) = Pλ(v) = (Lλ)∗V.

Proof: Let φ ∈ C0(R+), a continuous function on R+ with compact support. Then

Pλ,t(v)(φ) =
1
t

∑

Ii∩[0,t]6=∅
liφ(li).
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Let Lλ : T1(S) → R+ be the function described above. Then if αv(t) ∈ Ii, we have Lλ(α′v(t)) = li.
Therefore

Pλ,t(v)(φ) =
1
t

∑

Ii∩[0,t]6=∅
liφ(li) =

1
t

∑

Ii∩[0,t] 6=∅

∫

Ii

φ(Lλ(α′v(t))) dt =
1
t

∫

Jt

φ(Lλ(α′v(t))) dt

where Jt is the union of the intervals Ii that intersect [0, t]. We compare Pλ,t(v)(φ) to the time
average, i.e.

Qλ,t(v)(φ) =
1
t

∫ t

0
φ(Lλ(α′v(s))) ds.

If αv(0) 6∈ λ, then there exists an interval Ii0 = (−a0, b0) with 0 ∈ Ii0 . If αv(0) ∈ λ, we set a0 = 0.
Similarly if αv(t) 6∈ λ, then there exists an interval Iit = (t − at, t + bt) with t ∈ Iit . If αv(t) ∈ λ,
we set bt = 0. Then

Pλ,t(v)(φ)−Qλ,t(v)(φ) =
1
t

(a0φ(li0) + btφ(lit)) .

As φ has compact support, let supp(φ) ⊆ [x, y]. Then we have

|Pλ,t(v)(φ)−Qλ,t(v)(φ)| ≤ (a0 + y) ‖φ‖∞
t

, (1)

where ‖ · ‖∞ is the sup norm.

The integral Qλ,t(v)(φ) is the time average of the function φ ◦Lλ along the ray t 7→ α′v(t) in T1(S).
The function φ ◦ Lλ is easily shown to be in L1(V ). As the geodesic flow on T1(S) is ergodic (see
[3]), by the Birkhoff ergodic theorem (see [2]) we have that for almost all v with respect to the
volume measure V ,

lim
t→∞Qλ,t(v)(φ) =

∫

T1(S)
φ(Lλ(v)) dV = ((Lλ)∗V )(φ).

Therefore, for any φ ∈ C0(R+) there exists a set of full measure Aφ ⊂ T1(S) such that

lim
t→∞Qλ,t(v)(φ) = ((Lλ)∗V )(φ) for all v ∈ Aφ.

By the Weierstrass approximation theorem (see [5]), we can choose a countable basis {φi} for the sup
norm topology on C0(R+). Then A = ∩Aφi is a set of full measure on which limt→∞Qλ,t(v)(φi) =
((Lλ)∗V )(φi) for all i.

Now let φ ∈ C0(R+) and v ∈ A. Then there exists a subsequence φij converging uniformly to φ on
R+.

By linearity, we have

|Qλ,t(v)(φ)−Qλ,t(v)(φij )| ≤ ‖φij − φ‖∞ |((Lλ)∗V )(φij )− ((Lλ)∗V )(φ)| ≤ ‖φij − φ‖∞.

By uniform convergence of φij , for any ε > 0, there exists an m > 0 such that ‖φij − φ‖∞ < ε for
all j > m. We choose a j > m, then

|Qλ,t(v)(φ)− ((Lλ)∗V )(φ)| ≤ |Qλ,t(v)(φ)−Qλ,t(v)(φij )|+ |Qλ,t(v)(φij )− ((Lλ)∗V )(φij )|
+|((Lλ)∗V )(φij )− ((Lλ)∗V )(φ)|.
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Therefore
|Qλ,t(v)(φ)− ((Lλ)∗V )(φ)| ≤ |Qλ,t(v)(φij )− ((Lλ)∗V )(φij )|+ 2ε.

As v ∈ A, limt→∞Qλ,t(v)(φij ) = ((Lλ)∗V )(φij ). Thus there exists a T > 0 such that

|Qλ,t(v)(φij )− ((Lλ)∗V )(φij )| ≤ ε for all t ≥ T.

Therefore
|Qλ,t(v)(φ)− (Lλ)∗(V )(φ)| ≤ 3ε for all t ≥ T

giving
lim
t→∞Qλ,t(v)(φ) = ((Lλ)∗V )(φ).

By (1) there are constants a0, y such that

|Pλ,t(v)(φ)−Qλ,t(v)(φ)| ≤ (a0 + y) ‖φ‖∞
t

.

Therefore we have
lim
t→∞Pλ,t(v)(φ) = lim

t→∞Qλ,t(v)(φ) = ((Lλ)∗V )(φ).

As φ is arbitrary,
lim
t→∞Pλ,t(v) = (Lλ)∗V for almost every v ∈ T1(S).

Let M(R+) be the space of measures on the open interval (0,∞) with the weak∗ topology. If
f : R+ → R+ is a continuous function, then we obtain a map f̂ : M(R+) →M(R+) given by

f̂(m)(φ) = m(f · φ) =
∫ ∞

0
f(x)φ(x) dm

for any φ ∈ C0(R+) with compact support. On the level of infinitesimals, the map f̂ is just
multiplication by the function f and thus has inverse (̂1/f).

Taking r(x) = 1/x, we have by definition that

r̂(Pλ,t(v)) = Dλ,t(v).

Therefore we have the following corollary.

Corollary 7 For almost all v ∈ T1(S) (wrt Ω), limt→∞Dλ,t(v) exists and satisfies

lim
t→∞Dλ,t(v) = Dλ(v) = r̂((Lλ)∗V ).

From the above corollary, Theorem 1 follows from calculating (Lλ)∗V . Before we do the calculation,
we consider the simpler case of geodesics and geodesic currents intersecting a single ideal triangle
in H2.
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4 Intersection of a geodesic current with an ideal triangle

We first consider the length of intersection of a geodesic with a fixed ideal triangle. Let T be an
ideal triangle in H2. We define L : G(H2) → [0,∞] by L(g) = Length(g ∩ T ), with L(g) = 0 if
g ∩ T = ∅. We observe that if L(g) is non-zero and finite, then L is continuous at g. Thus letting
OT = L−1((0,∞)) we have that L is continuous when restricted to OT .

If m is a geodesic current, we define a measure L∗m on (0,∞) as follows. Let φ : (0,∞) → R be a
continuous map with compact support in (0,∞). We extend φ to a continuous map φ : [0,∞] → R
by defining φ(0) = φ(∞) = 0 and φ(x) = φ(x) otherwise. We then define the measure L∗m on
(0,∞) by letting (L∗m)(φ) = m(φ ◦ L). We will suppress the extension notation in what follows
and identify φ with φ.

We now describe the length function L in terms of the endpoints of the geodesic. Let T be the
ideal triangle in the upper half space H2 with endpoints {0, 1,∞} in R. We denote the intervals
I1 = (−∞, 0), I2 = (0, 1) and I3 = (1,∞). We consider the nine subsets Ii × Ij ⊆ G(H2). If
g ∈ Ii× Ii then g ∩T = ∅ and therefore L = 0 on the subsets Ii× Ii. If g 6∈ Ii× Ij for any i, j, then
g has one endpoint in {0, 1,∞} and therefore has either zero or infinite length. Therefore the set
OT = L−1((0,∞)) is given by

OT =
3⋃

i6=j
i,j

Ii × Ij .

We define Lij : Ii × Ij → (0,∞) to be the restriction of L to Ii × Ij .

Lemma 8 The length function L12 : I1 × I2 → (0,∞) is given by the formula

L12(u, v) =
1
2

ln
(

1− u

1− v

)
.

Proof: We will first find L13. Let g = (u, v) ∈ I1 × I3 be a geodesic. We drop a perpendicular P
from ∞ to g, with vertex p. We will first assume that p ∈ T . Then P and g decompose T into two
triangles and a quadrilateral. We label the triangles T0 and T1 so that the vertical line x = i is a
side of Ti. Both triangles have a right angle and an ideal vertex. We label the other angle of Ti by
θi and the length of the only finite length side of Ti by li (see Figure 2). Then L13(u, v) = l0 + l1.
By hyperbolic trigonometry we have tanh li = cos θi (see [6]). We denote the euclidean center and
radius of g by c, r respectively. Then u = c− r, v = c+ r. From euclidean trigonometry we have

tanh l0 = cos θ0 =
c

r
tanh l1 = cos θ1 =

1− c

r
.

As tanh−1 x = 1
2 ln(1+x

1−x), we have

l0 =
1
2

ln
(

1 + c
r

1− c
r

)
=

1
2

ln
(
−v
u

)
, l1 =

1
2

ln

(
1 + 1−c

r

1− 1−c
r

)
=

1
2

ln
(−u+ 1
v − 1

)
.
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u v
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Figure 2: The intersection of a geodesic g with the standard ideal triangle T in H2

Combining we obtain

L13(u, v) =
1
2

ln
(
v(u− 1)
u(v − 1)

)
.

The case when p 6∈ T gives the same formula.

The isometry f(z) = 1/z maps I1 × I3 to I1 × I2. Therefore on I1 × I2 we have

L12(u, v) = L13(1/u, 1/v) =
1
2

ln
(

1− u

1− v

)
.

Recall that µ is the Liouville measure on G(H2). We now use Lemma 8 to calculate its pushforward
by L.

Theorem 9 The measure MT = L∗µ is given differentially by

dMT =
6x dx
sinh2 x

.

Proof: As µ is invariant under Möbius transformations, it suffices to consider the standard ideal
triangle T with endpoints {0, 1,∞} in R. As before we note that L is supported in OT = ∪i6=jIi×Ij
where I1 = (−∞, 0), I2 = (0, 1) and I3 = (1,∞).
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Let φ : (0,∞) → R be a continuous function with compact support on (0,∞). Then by definition
of the pushforward, we have

(L∗µ)(φ) = µ(φ ◦ L) =
3∑

i6=j
i,j=1

(∫

Ii×Ij

φ ◦ L dµ
)

=
3∑

i 6=j
i,j=1

Mij(φ).

Thus L∗µ on (0,∞) is the sum of the six measures Mij , i 6= j.

Let i 6= j and k 6= l, then there exists a Möbius transformation p sending T to itself and mapping
Ii×Ij homeomorphically to Ik×Il. By invariance of µ, we have µ = p∗µ. The map p is a hyperbolic
isometry and sends T to itself, thus L ◦ p = L. Therefore by change of variable in the integral Mij

we have Mkl = Mij . Thus
L∗µ = 6M12.

By Lemma 8 we have that for (u, v) ∈ I1 × I2

L(u, v) =
1
2

ln
(

1− u

1− v

)
.

Letting x = L(u, v), we solve for u and v, to obtain u = 1 − (1 − v)e2x, v = 1 − (1 − u)e−2x. The
measure µ is given differentially by

dµ =
dudv

|u− v|2

Therefore
M12(φ) =

∫

I1

∫

I2

φ(L(u, v)) dudv
|u− v|2 .

We make the change of variable x = L(u, v), v = v. Then u = f(v, x) = 1 − (1 − v)e2x and
v = g(v, x) = v. Thus the Jacobian is

J(v, x) =
∣∣∣∣

∂f
∂x

∂g
∂x

∂f
∂v

∂g
∂v

∣∣∣∣ =
∣∣∣∣
−2(1− v)e2x 0

e2x 1

∣∣∣∣ = 2(1− v)e2x.

Then we have

dµ =
J(v, x) dvdx
|u− v|2 =

2(1− v)e2x dvdx

|1− (1− v)e2x − v|2 =
dvdx

2(1− v) sinh2 x
.

Let F (u, v) = (v, x). Then we have that

M12(φ) =
∫

F (I1×I2)

φ(x) dvdx
2(1− v) sinh2 x

.
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We now need to find F (I1 × I2). We fix a v ∈ (0, 1). Then from the formula for L in terms of u, v
it follows that L has range

1
2

ln
(

1
1− v

)
< L(u, v) <∞.

Therefore

F (I1 × I2) =
{

(v, x)
∣∣∣∣ 0 < v < 1,

1
2

ln
(

1
1− v

)
< x <∞

}

rewriting we obtain

F (I1 × I2) =
{
(v, x) | 0 < v < 1− e−2x, 0 < x <∞}

.

Therefore

M12(φ) =
∫ ∞

0

(∫ 1−e−2x

0

dv

2(1− v)

)
φ(x) dx
sinh2 x

.

Substituting t = 1− v we get

∫ 1−e−2x

0

dv

2(1− v)
=

1
2

∫ 1

e−2x

dt

t
=

1
2
(ln(1)− ln(e−2x)) = x.

Therefore we have
M12(φ) =

∫ ∞

0

xφ(x) dx
sinh2 x

,

giving

dMT =
6x dx
sinh2 x

.

Related to the measure MT is a probability measure PT on (0,∞) given by the pushforward of the
unit volume measure on the unit tangent bundle T1(T ) to an ideal triangle T . If p ∈ T1(T ) then
associated to p we let g(p) be the oriented geodesic with tangent vector p . Then L(g(p)) is the
length of the segment through p in T . The measure PT is defined to be the probability distribution
of lengths for a randomly chosen tangent vector in T .

If we let Ω be the standard volume measure on T1(T ), then the probability measure PT is given by

PT =
(L ◦ g)∗Ω
Ω(T1(T ))

.

Theorem 10 The measure PT is given differentially by

dPT =
6x2dx

π2 sinh2 x
.
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Proof: The map g : T1(H2) → G(H2) is a trivial fiber bundle. Thus we have T1(H2) = G(H2)×R.
In terms of this representation, the volume form Ω is given by dΩ = 2dµ×dt where µ is the Liouville
geodesic current and dt is hyperbolic length along the fiber (see [4] for details). Thus

(L ◦ g)∗Ω(φ) =
∫

T1(T )
φ(L(g(p))) dΩ.

As T1(H2) = G(H2)×R, we have p represented by (x, y, t) where (x, y) are the endpoints of g(p).
Furthermore dµ = dxdy/|x − y|2. Also, for a given geodesic (x, y), the parameter t takes values
from c(x, y) to c(x, y) + L(x, y), for some constant c(x, y).Thus

(L ◦ g)∗Ω(φ) =
3∑

i,j=1

i6=j

∫

Ii×Ij

2 dxdy
|x− y|2

∫ c(x,y)+L(x,y)

c(x,y)
φ(L(x, y)) dt.

Therefore integrating over t

(L ◦ g)∗Ω(φ) =
3∑

i,j=1

i6=j

∫

Ii×Ij

2φ(L(x, y))L(x, y) dxdy
|x− y|2 .

Using Theorem 9 and performing the change of variables l = L(x, y), y = y, we obtain

(L ◦ g)∗Ω(φ) =
3∑

i,j=1

i 6=j

∫ ∞

0

2l2φ(l)
sinh2 l

dl =
∫ ∞

0

12l2φ(l)
sinh2 l

dl.

Therefore normalizing by Ω(T1(T )) = 2π2, we obtain

dPT (x) =
6x2

π2 sinh2 x
dx.

An immediate corollary relates the expected value of PT to the Riemann zeta function;

Corollary 11 The expected value E(PT ) of PT is given by

E(PT ) =
∫ ∞

0

6x3

π2 sinh2 x
dx =

9
π2
ζ(3) = 1.09614 . . .

To put this expected value in perspective, we observe that it is quite close to the diameter of the
hyperbolic disk inscribed in T , which is log(3) = 1.09861 . . ..

5 Calculating (Lλ)∗V

Let S = H2/Γ be a closed hyperbolic surface and let λ be a maximal geodesic lamination on S.
Then S − λ = ∪k

i=1Ti where Ti are disjoint ideal triangles. Then as the area of S is 2π|χ(S)|, we
have k = 2|χ(S)|.

13



We let T ′i be an ideal triangle in H2 which is a lift of Ti. Then as before, we define L′i(g) = Length(g∩
T ′i ). If T ′′i is another lift of Ti, then there exists a Möbius transformation p ∈ Γ with p(T ′i ) = T ′′i .
Let L′′i (g) = Length(g ∩ T ′′i ). Then L′i(g) = Length(g ∩ p−1(T ′′i )) = Length(p(g) ∩ T ′′i ) = L′′i (p(g)).
Therefore L′i = L′′i ◦ p. Thus if m ∈ C(S) is a geodesic current, then (L′i)∗m = (L′′i ◦ p)∗m =
(L′′i )∗(p∗m). As m is invariant under Γ, p∗m = m. Therefore (L′i)∗m = (L′′i )∗m and therefore can
define (Li)∗m = (L′i)∗m.

Definition: Ifm is a geodesic current of length l(m) then the distribution of lengths of intersections
of m and λ, denoted Dλ(m), is the measure

Dλ(m) =
1

l(m)

k∑

i=1

(Li)∗m.

From Theorem 9 we have that on (0,∞)

d(Dλ(µ)) =
12|χ(S)|x dx
l(µ) sinh2 x

.

Then as l(µ) = 2π2|χ(S)| (see Bonahon [1]), we have

d(Dλ(µ)) =
6x dx

π2 sinh2 x
= dM.

Thus Dλ(µ) = M and we call M the distribution of lengths of intersections for a maximal lamina-
tion. This proves part 1 of Theorem 3.

Theorem 12 For any maximal geodesic lamination λ, the pushforward of the normalized volume
measure V on T1(S) by Lλ is given by

(Lλ)∗V = PT .

Proof: As V is the unit volume measure obtained by normalizing Ω, and Ω(T1(S)) = 4π2|χ(S)|,
we have

((Lλ)∗V )(φ) =
1

4π2|χ(S)|
∫

T1(S)
φ(Lλ(v)) dΩ.

As λ is a maximal lamination, we have S − λ = ∪k
i=1Ti where Ti are disjoint ideal triangles. As

λ ⊂ S is measure zero, we have

((Lλ)∗V )(φ) =
1

4π2|χ(S)|
k∑

i=1

∫

T1(Ti)
φ(Lλ(v)) dΩ.

Let q : T1(H2) → T1(S) be the standard covering map. Let T ′i be a lift of Ti to H2. Then we lift
the integrals over Ti using q to integrals over T ′i , also using Ω to denote the volume measure on
T1(H2), and obtain ∫

T1(Ti)
φ(Lλ(v)) dΩ =

∫

T1(T ′i )
φ(Lλ(q(v)) dΩ.

14



Let g : T1(H2) → G(H2) be the fibre bundle such that v is tangent to geodesic g(v). As above, let
Li : G(H2) → [0,∞] where Li(g) = Length(g ∩ T ′i ). Then for v ∈ T1(T ′i ), Lλ(q(v)) = Li(g(v)) and

∫

T1(T ′i )
φ(Lλ(q(v)) dΩ =

∫

T1(T ′i )
φ(Li(g(v)) dΩ.

By Theorem 10, ∫

T1(T ′i )
φ(Li(g(v)) dΩ = 2π2PT (φ).

Therefore as there are 2|χ(S)| triangles Ti, we combine to obtain

((Lλ)∗V )(φ) =
1

4π2|χ(S)|
k∑

i=1

(
2π2PT (φ)

)
= PT (φ).

Finally we have

d((Lλ)∗V ) = dPT =
6x2 dx

π2 sinh2 x
.

Applying Corollary 7, we obtain

Corollary 13 For almost all v ∈ T1(S) (wrt Ω), we have Dλ(v) = M and thus

d(Dλ(v)) =
6x dx

π2 sinh2 x
.

The above corollary completes the proof of Theorem 1.

6 Continuity of Dλ at µ

In this section we prove part 2 of of Theorem 3. We recall the definition of Dλ(m):

Dλ(m) =
1

l(m)

k∑

i=1

(Li)∗m.

We first prove a lemma about weak∗ convergence.

Lemma 14 Let X ⊆ Rn be open and K ⊆ X a compact domain with piecewise smooth boundary
∂K. If m ∈ M(X) we define m ∈ M(K) to be the restriction of m to K. Let mi → m in M(X)
and φ : K → R continuous on K. Then

lim
i→∞

|mi(φ)−m(φ)| ≤
∫

∂K
|φ| dm.
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Proof: Let φ : K → R be a continuous function. We let φ = φ+ − φ− where φ+, φ− are both
continuous non-negative functions on K. If the lemma is true for non-negative functions then we
have

lim
i→∞

|mi(φ)−m(φ)| = lim
i→∞

∣∣mi(φ+ − φ−)−m(φ+ − φ−)
∣∣

≤ lim
i→∞

∣∣mi(φ+)−m(φ+)
∣∣ + lim

i→∞
∣∣mi(φ−)−m(φ−)

∣∣

≤
∫

∂K
φ+ dm+

∫

∂K
φ− dm =

∫

∂K
|φ| dm.

We let φ : K → R be a continuous non-negative function. Given an ε > 0, we let Nε(∂K) be
the ε neighborhood of the boundary of K. For ε small, we obtain non-empty compact domains
K−ε,K+ε given by K−ε = K − Nε(∂K), and K+ε = K ∪ Nε(∂K). Then K−ε ⊂ K ⊂ K+ε. We
define continuous non-negative functions with compact support φ−ε : X → R, φ+ε : X → R which
will approximate φ from above and below.

The function φ−ε is chosen to be pointwise monotonically increasing in ε and satisfy

supp(φ−ε) ⊆ K, φ−ε(x) = φ(x) for x ∈ K−ε, φ−ε(x) ≤ φ(x) for x ∈ K.

The function φ+ε is similarly chosen to be pointwise monotonically decreasing in ε and satisfy

supp(φ+ε) ⊆ K+ε, φ+ε(x) = φ(x) for x ∈ K, ‖φ+ε‖X ≤ ‖φ‖K .

Then as the measures are positive, we have

mi(φ−ε)−m(φ+ε) ≤ mi(φ)−m(φ) ≤ mi(φ+ε)−m(φ−ε).

As mi → m we take limits to obtain

m(φ−ε)−m(φ+ε) ≤ lim
i→∞

(mi(φ)−m(φ)) ≤ lim
i→∞

(mi(φ)−m(φ)) ≤ m(φ+ε)−m(φ−ε).

Thus letting ψε = φ+ε − φ−ε, we have

lim
i→∞

|mi(φ)−m(φ)| ≤ |m(ψε)| .

The function ψε is non-negative, monotonically decreasing in ε, and has supp(ψε) ⊆ Nε(∂K).
Furthermore if x 6∈ ∂K, then limε→0 ψε(x) = 0 and if x ∈ ∂K then limε→0 ψε(x) = φ(x). Therefore
by Lebesgue dominated convergence (see [5]) we have

lim
ε→0

m(ψε) =
∫

∂K
φ dm.

Thus
lim
i→∞

|mi(φ)−m(φ)| ≤
∫

∂K
φ dm.
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Lemma 15 Let T be the lift of an ideal triangle embedded in S and µ be the Liouville geodesic
current of S. If mi is a sequence of discrete geodesic currents such that mi → µ, then L∗mi → L∗µ.

Proof: We need to show that if φ : (0,∞) → R is continuous with compact support then
L∗mi(φ) → L∗µ(φ), or equivalently that mi(φ ◦ L) → µ(φ ◦ L). This would follow directly from
the definition of the weak∗ topology if φ ◦ L were continuous and compactly supported, however
this is not the case. To establish the convergence we will instead describe a continuous function L̂
such that φ ◦ L̂ has compact support and m(φ ◦ L) = m(φ ◦ L̂). Then continuity follows from the
definition of the weak∗ topology.

Let supp(φ) = [a, b] ⊆ (0,∞). As before we need only integrate φ ◦ L over OT = L−1((0,∞)). We
move T by a Möbius transformation to have endpoints {0, 1,∞} in the upper half space model of
H2. Then as in Lemma 8, the set OT is composed of 6 open sets Ii × Ij , i, j = 1, . . . , 3, i 6= j.

Let A = L−1([a, b]) be the set of all geodesics in OT with length between a and b. We let Aij =
A ∩ (Ii × Ij) and Lij : Ii × Ij → (0,∞) be the restriction of L to Ii × Ij . Then for m ∈ C(S),

L∗m(φ) = m(φ ◦ L) =
3∑

i6=j
i,i=1

(∫

Ii×Ij

φ ◦ Lij dm

)
=

3∑

i 6=j
i,i=1

m|Ii×Ij (φ ◦ Lij).

By the formula for L12 we have if (u, v) ∈ A12 then

a ≤ 1
2

ln
(

1− u

1− v

)
≤ b.

Solving we get
(1− v)e2a ≤ 1− u ≤ (1− v)e2b.

As v > 0, we get 1 − u ≤ e2b giving 1 − e2b ≤ u. Similarly as u < 0 we get 1 ≤ (1 − v)e2b giving
v ≤ 1− e−2b. Thus we have 1− e2b ≤ u and v ≤ 1− e−2b. Thus A12 ⊆ [1− e2b, 0)× (0, 1− e−2b].

We choose ε > 0 so that if both u, v are within ε of 0, then L12(u, v) < a. Using the formula for
L12, we can choose ε = (e2a − 1)/(e2a + 1).

Thus we consider the intervals

J1 = [1− e2b,−ε], J ′1 = [−ε, 0] and J2 = [ε, 1− e−2b], J ′2 = [0, ε].

Then the set K = (J1 × J2) ∪ (J1 × J ′2) ∪ (J ′1 × J2) is a compact subset of G(H2) (see Figure 3).
Also, we have that supp(φ ◦ L12) ⊆ K.

The function φ ◦ L12 is not continuous on K, being discontinuous at the points D = (J1 × {0}) ∪
({0} × J2) ⊆ ∂K. We define the function L̂12 : K → R by

L̂12(u, v) =
1
2

ln
(

1− u

1− v

)
.
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Figure 3: The region K as a subset of R2

Note that this is the same formula as we obtained for L12 in Lemma 8, however, here we allow
any (u, v) ∈ K whereas L12 is supported on I1 × I2. The key difference is that K includes some
geodesics (i.e. D) sharing one ideal endpoint with T , and L12 extends continuously to these points,
giving L̂12.

Thus L̂12 is continuous on K, with L̂12 = L on K −D, and we have
∣∣∣m|K (φ ◦ L̂12)− m|I1×I2

(φ ◦ L12)
∣∣∣ =

∣∣∣∣
∫

D
φ ◦ L̂12 dm

∣∣∣∣ ≤ m(D)‖φ‖.

If m = µ then m(D) = 0 by the definition of µ. As T is a lift of an embedded ideal triangle in S,
none of the vertices of T can be an endpoint of a closed geodesic on S. Therefore for m discrete,
m(D) = 0. Thus for m = µ or mi,

m|I1×I2(φ ◦ L12) = m|K(φ ◦ L̂12).

As mi → µ, K is a compact domain with piecewise smooth boundary, and, φ ◦ L̂12 is continuous,
we have by Lemma 14:

lim
i→∞

∣∣∣mi|K (φ ◦ L̂12)− µ|K (φ ◦ L̂12)
∣∣∣ ≤

∫

∂K
|φ ◦ L̂12| dµ.

Therefore
lim
i→∞

∣∣mi|I1×I2
(φ ◦ L12)− µ|I1×I2

(φ ◦ L12)
∣∣ ≤

∫

∂K
|φ ◦ L̂12| dµ.

We have D ⊆ ∂K and by our choice of K we have (φ ◦ L̂12)(x) = 0 for x ∈ ∂K −D. Therefore

lim
i→∞

∣∣mi|I1×I2
(φ ◦ L12)− µ|I1×I2

(φ ◦ L12)
∣∣ ≤

∫

D
|φ ◦ L̂12| dµ ≤ µ(D)‖φ‖.

Therefore as µ(D) = 0 we have

lim
i→∞

∣∣mi|I1×I2
(φ ◦ L12)− µ|I1×I2

(φ ◦ L12)
∣∣ = 0.
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Combining the contributions from each of the Ii × Ij we obtain mi(φ ◦ L) → µ(φ ◦ L).

We now use Lemma 15 to prove the continuity property of Dλ described in part 2 of Theorem 3.

Corollary 16 Let µ be the Liouville geodesic current of S. If mi is a sequence of discrete geodesic
currents such that mi → µ, then Dλ(mi) → Dλ(µ).

Proof: By definition

Dλ(mi) =
1

l(mi)

k∑

j=1

(Lj)∗(mi).

By Lemma 15, for each j we have limi→∞(Lj)∗(mi) = (Lj)∗(µ). Also by continuity of the length
function l, we have limi→∞ l(mi) = l(µ) and

lim
i→∞

Dλ(mi) = lim
i→∞

1
l(mi)

k∑

j=1

(Lj)∗(mi) =
1
l(µ)

k∑

j=1

(Lj)∗(µ) = Dλ(µ).

We now apply Theorem 3 to Bonahon’s construction of sequences of discrete geodesic currents mi

such that mi → µ.

Recall that for any v ∈ T1(S) we defined the geodesic αv by the map αv : [0,∞) → S where
α′(0) = v and α is parameterized by arc length. For any L > 0, we form a closed path by joining
the endpoints of αv([0, L]) by a shortest arc (not necessarily unique). If this curve is homotopic to
a geodesic we call this closed geodesic αL

v .

Corollary 17 For almost every v ∈ T1(S) with respect to the volume measure Ω, there exists a
sequence {Ln} monotonically increasing to infinity, such that the geodesics βn = αLn

v satisfy

lim
n→∞Dλ(βn) = Dλ(µ) = M.

Proof: By Bonahon [1], for almost every v ∈ T1(S) with respect to the volume measure Ω, the
geodesics αL

v can be used to approximate the Liouville geodesic current µ. Specifically, for almost
every v ∈ T1(S) there exists a sequence {Ln} monotonically increasing to infinity, such that the
geodesics βn = αLn

v exist and satisfy

µ = (2π2|χ(S)|) lim
n→∞

m(βn)
l(βn)

.

Let mi = (2π2|χ(S)|)m(βi)/l(βi). By definition of Dλ for geodesic currents, Dλ(βi) = Dλ(mi).
Therefore applying Corollary 16 to the sequence mi → µ, we have

lim
i→∞

Dλ(βi) = lim
i→∞

Dλ(mi) = Dλ(µ) = M.
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der Mathematischen Wissenschaften. Springer-Verlag, New York, 1982. Translated from the
Russian by A. B. Sosinskĭı.
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