
LECTURE 9
RECURSION

MCS 275 Spring 2023
Emily Dumas

LECTURE 9: RECURSION
Reminders and announcements:

Homework 4 due Tuesday at Noon

Project 1 due next Friday, Feb 10, at 6pm

RECURSION
In computer science, recursion refers to a method of
solving a problem that depends on solving a smaller
version of the same problem.

Usually, recursion involves a function calling itself.

STRATEGIES USING RECURSION
Divide and conquer: A problem can be split into
pieces; solutions for the pieces can be combined to
the full solution.

e.g. Mergesort
"Decrease and conquer": Reduce a problem for a
given input (e.g. n) to the answer for a slightly
smaller input (e.g. n-1) and a bit of extra work.

e.g. Factorial

ITERATION
Recursive solutions are o�en contrasted with iterative
solutions.

Iterative: Loops and local variables keep track of all
state (work to be done, work completed, next ...)
Recursive: Arguments keep track of current state;
return values send back results.

Recursive solutions can always be converted to
iterative ones, o�en at the cost of more complex code.

STOP CONDITION
A function that always calls itself will never finish!

Recursion must include some kind of stop condition—
a case in which the function can directly return an
answer instead of calling itself.

TODAY'S EXAMPLES
Factorial
Fibonacci numbers
Paper folding sequence

FACTORIAL
The classic first example of recursion, computing

The argument to the function decreases with each
subsequent call, so it eventually reaches the stop
condition ().

n! = n × (n − 1) × ⋯ × 2 × 1.

n ≤ 1

FIBONACCI
The Fibonacci numbers are defined by

So the sequence begins

The definition immediately suggests a recursive
implementation.

= 0, = 1, and = +F0 F1 Fn Fn−1 Fn−2

0, 1, 1, 2, 3, 5, 8, 13, . . .

PAPER FOLDING SEQUENCE

Start with a strip of paper
Fold it in half n times, always in the same direction
Unfold and read the in/out creases 0 and 1

PAPER FOLDING SEQUENCE

PAPER FOLDING SEQUENCE
Let's use to mean concatenation of binary
sequences, so .

If is a binary sequence, let denote the sequence
with and switched, e.g.

Finally, let denote the sequence in opposite order,
e.g. .

⊕
0110 ⊕ 11 = 011011

A Ā

0 1 = 0001011101¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄

A
r

= 0100110010r

PFS(n) = PFS(n − 1) ⊕ 1 ⊕ PFS(n − 1)r¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄

COOL FACT
If you use the infinite paper folding sequence as the binary digits of
a real number, you get the paper folding constant.

This number is irrational. In 2007 it was shown1 that it is also
transcendental, i.e. cannot be expressed in terms of square roots,
cube roots, or any solutions of polynomials with rational
coefficients.

1

PFC = (0.11011001110010011101100 …)2

= 0.85073618820186 …

Adamczewski and Bugeaud, On the complexity of algebraic
numbers I: Expansions in integer bases, Annals of Mathematics 165

https://adamczewski.perso.math.cnrs.fr/ComplexityI.pdf
https://adamczewski.perso.math.cnrs.fr/ComplexityI.pdf
https://adamczewski.perso.math.cnrs.fr/ComplexityI.pdf

LIMITED RECURSION DEPTH
Recursive functions are limited by a maximum call
stack size. The call stack is a data structure that keeps
track of function calls that are currently underway.

Calling a function → pushing onto call stack
Returning from a function → popping from call stack

Python imposes a limit to prevent the memory area
used to store the call stack from running out (a stack
overflow), which would abruptly stop the interpreter.

ITERATIVE SOLUTIONS
Let's write iterative versions of factorial, Fibonacci, and
paper folding. (Or as many as time allows.)

REFERENCES
Lutz discusses recursive functions in Chapter 19 (pages 555-559 in the print edition).

 by Deitel and Deitel discusses
recursion in Chapter 11. The online version of this text is freely available to UIC students,
faculty, and staff. (You will first need to with you UIC email.)

The open textbook discusses recursion in
.

Computer Science: An Overview by Brookshear and Brylow discusses recursion in Section
5.5. (This book is o�en an optional text for MCS 260.)

 discusses recursion.

REVISION HISTORY
2022-02-07 Last year's lecture on this topic finalized
2023-02-03 Updated version for spring 2023

Intro to Python for Computer Science and Data Science

log in

Think Python, 2ed, by Allen B. Downey Sections
5.8 to 5.10

Lecture 9 of MCS 275 Spring 2023

https://learning.oreilly.com/library/view/intro-to-python/9780135404799/
https://www.safaribooksonline.com/library/view/temporary-access/?orpq
http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2006.html#sec62
http://greenteapress.com/thinkpython2/html/thinkpython2006.html#sec62
https://dumas.io/teaching/2023/spring/mcs275/slides/lecture9.html

