
LECTURE 8
CONTEXT MANAGERS

MCS 275 Spring 2023
David Dumas

LECTURE 8: CONTEXT MANAGERS
Reminders and announcements:

Project 1 due Fri Feb 10 at 6pm central.

Project 1 autograder will open soon.

Homework 4 will be posted Thursday night.

PUZZLE
What's the output?

A = 2
B = [3,4,5]
C = [5,6,7]

def f():
 A = 7
 B[0] = 7
 C = [7,7,7]

f()
print(A)
print(B[0])
print(C[0])

PUZZLE
What's the output?

A = 2
B = [3,4,5]
C = [5,6,7]

def f():
 A = 7 # new local A
 B[0] = 7 # B.__setitem__(0,7) on global B
 C = [7,7,7] # new local C

f()
print(A) # 2 (unchanged)
print(B[0]) # 7 (same B, new item at index 0)
print(C[0]) # 5 (unchanged)

MARKDOWN
Text cells (Colab) or markdown cells (Jupyter) contain
formatted text. When editing, formatting is specified
with a language called Markdown.

Heading level 1
Heading level 2
Heading level 3

* Bullet list item
* Another bullet list item

1. Numbered list item
1. Another numbered list item

Links: [text to display](https://example.com)

COMMON PATTERN
Acquire, use, and free a resource.

x = resource() # open file, connect to database, ...

x.action()
x.action2(y,z)
if x.status() == w:
 ...

x.close() # or "release" or "delete"

EXAMPLE: FILE I/O
ACQUIRE
fp = open("data.txt","w",encoding="UTF-8")
USE
for s in L:
 fp.write(s+"\n")
RELEASE
fp.close()

POSSIBLE BUG
Is the resource always freed? What if an exception is
raised?

All files are closed when a program exits, but open files
are a limited resource.

Will this function always close the file?
def file_contains_walrus(fn):
 """Return True if "walrus" is a line of file `fn`"""
 fileobj = open(fn,"r",encoding="UTF-8")
 for line in fileobj:
 if line.strip() == "walrus":
 fileobj.close()
 return True
 return False

Currently, in CPython (the usual interpreter): Yes.

In CPython, local variables are deleted as soon as a
function returns. Deleting a file object closes the file.

But this isn't a language guarantee!

ANOTHER WAY
Use with block to ensure automatic file closing.

Extra bonus: you can see exactly what part of the
program needs the open file.

with open("data.txt","w",encoding="UTF-8") as fileobj:
 fileobj.write(...)
 fileobj.write(...)
 # other write operations...
print("At this point, the file is already closed")

CLEANUP GUARANTEE
A file opened using a with block will be closed as
soon as execution leaves the block, even if an
exception is raised.

RECOMMENDATION
Always open files using with, and make the body as
short as possible.

Think of files like refrigerators: Open them for the
shortest time possible.

IN OTHER LANGUAGES
Other OO languages o�en recommend RAII:
Resource Acquisition is Instantiation.

Making an instance of a class acquires a resource,
which is held for the lifetime of the object.

The resource is then freed by the class destructor
when the object is deleted.

PYTHON OBJECT LIFETIME
Python deletes objects you can no longer access
(garbage collection) but:

No promises about exactly when
No guarantee any function (destructor) gets called
as part of deletion
Manual deletion is discouraged

Thus Python's with blocks are a substitute for RAII.

CONTEXT MANAGERS
Any object whose class is a context manager can be
used in a with-block.

A context manager is a class with special methods:

__enter__ to perform setup
__exit__ to perform cleanup

EXAMPLES
Context managers are appropriate for:

Network connections
Database connections
Locks
Any limited or exclusive access right
Temporary setup or changes that must be reverted

CONTEXT MANAGER PROTOCOL
__enter__(self):

Performs setup
Return value is assigned to the name a�er as in
with statement.

__exit__(self,exc_type,exc,tb):
Performs cleanup.
The arguments describe any exception that
happened in the with block.

Expect each method to be called exactly once.

BUILT-IN CONTEXT MANAGERS
Some examples (listed as class - resource)

open - Open file
threading.Lock - Thread-exclusive right
urllib.request.urlopen - HTTP connection
tempfile.TemporaryFile - Temporary file
(deleted a�er use)

REFERENCES

Lutz discusses context managers in Chapter 34. This is a long chapter covering several
other topics. Look for the heading with/as Context Managers. In the print edition, it
beings on page 1114.

REVISION HISTORY
2022-01-31 Last year's lecture on this topic finalized
2023-01-30 Updated version for spring 2023

Python documentation on Context Manager types

https://docs.python.org/3/library/stdtypes.html#typecontextmanager

