LECTURE 7

NOTEBOOKS

MCS 275 Spring 2023
Emily Dumas

LECTURE 7: NOTEBOOKS

Reminders and announcements:

e Project 1 deadline 6pm central on Fri Feb 10.

e Project 1 autograder opens no later than Mon Feb 6.

PROJECT 1

e Major focus is reading existing code.
e Uses object-oriented programming.
e You must add a few subclasses of an existing class.

IA_

—

DESTINATION
CACHE
s |FACTORY
278
I [1
<z ® q
UNLOAD
HERE -

| SupplyCache | J ShatHe I [Deshinadion Cocle |

/1| AN 71

[%acleﬂ ~H SL *frf'[gj
/

[%UC'Z‘FD(‘“/ Sﬁu‘frf'[,_;] '

/

LY
AY
-

PROJECT 1 FILES

shuttle.py

Edit and submit. Add
subclasses as requested.

fixtures.py

Read.

simulation.py

Read. Use/modify for testing.

tui.py

Module used by
simulation.py.Don't need

to read.

PROJECT 1

Now, a demo of a solution to the project in the REPL
andusing simulation.py.

PYTHON INTERFACES

e REPL — One command at a time. Result is printed.

e Script mode — Runs an entire file. Nothing printed
unless explicitly requested (e.g. print (...)).

PYTHON INTERFACES

e REPL — One command at a time. Result is printed.

e Notebook — Make groups of commands (cells) to
run when ready. Last resultin a cell is printed.

e Script mode — Runs an entire file. Nothing printed
unless explicitly requested (e.g. print (...)).

WHAT NOTEBOOKS LOOK LIKE

3. Cipher class hierarchy

Build a module encoders (in encoders.py) containing classes for simple ciphers (or codes; ways of obscuring the contents of a string that can be
undone later by the intended recipient).

There should be a base class BaseEncoder that has two methods:

« encode(self,text) :Returnsthe string text unchanged. Subclasses will alter this behavior.
« decode(self,text) :Returnsthe string text unchanged. Subclasses will alter this behavior.

It should be the case that obj.decode(obj.encode(s)) == s istrue for any string S , and for any object 0bj thatis an instance of
BaseEncoder or subclass thereof.

Then, build subclasses of BaseEncoder that implement encoding and decoding by different ciphers, including:

. RotateEncoder : Encoding rotates letters in the alphabet forward by a certain number of steps, e.g. so rotation by 5 turns "a" into "f* and "z" into "e
(because we wrap around when we reach the end of the alphabet). No transformation is applied to characters other than capital and lower case letters.
Constructor accepts an integer, specifying the number of steps to rotate.

« Rotl3Encoder :Asubclass of RotateEncoder that fixes the steps at 13, so that encoding and decoding are the same operation.

« SubstitutionEncoder :The constructor accepts two arguments, pre and post . The string pre is a list of characters to be replaced when
encoding, and string post indicates the things to replace them with. For example, using pre="abcd" and post="1j4e" would mean that "a" is
supposed to be replaced by "1", "b" by "j", "c¢" by "4", and so on.

= Be careful writing the encoder so that you don't replace things twice. For example pre="abc" and post="bca" should encode "banana" to
"cbnbnb", and not "ccnenc”.

= You can assume that pre and post contain the same characters but in a different order. If that's not the case, then it would be impossible to
ensure that decoding after encoding always gives the original text back again.

You can find some test code below. The test code assumes all of the classes are in the global scope.

In []: E = RotateEncoder(5)
s = E.encode("Hello world!") # Mjgqt btwqi!
print(s) # Mjgqt btwgi!
print(E.decode(s)) # Hello world!

F = SubstitutionEncoder("lmno","nolm")
s = F.encode("Hello everyone!")

print(s) # Hennm everymle!
print(F.decode(s)) # Hello everyone!

MCS 275 uses notebooks for homework, worksheets,
and project descriptions, so you've seen these before.

But you usually see a version converted to HTML.

WHAT NOTEBOOKS LOOK LIKE

3. Cipher class hierarchy

Build a module encoders (in encoders.py) containing classes for simple ciphers (or codes; ways of obscuring the contents of a string that can be
undone later by the intended recipient).

There should be a base class BaseEncoder that has two methods:

« encode(self,text) :Returnsthe string text unchanged. Subclasses will alter this behavior.
« decode(self,text) :Returns the string text unchanged. Subclasses will alter this behavior.

It should be the case that obj.decode(obj.encode(s)) == s istrue for any string S , and for any object 0bj thatis an instance of
BaseEncoder or subclass thereof.

Then, build subclasses of BaseEncoder that implement encoding and decoding by different ciphers, including:

. RotateEncoder : Encoding rotates letters in the alphabet forward by a certain number of steps, e.g. so rotation by 5 turns "a" into "f* and "z" into "e
(because we wrap around when we reach the end of the alphabet). No transformation is applied to characters other than capital and lower case letters.
Constructor accepts an integer, specifying the number of steps to rotate.

« Rotl3Encoder :Asubclass of RotateEncoder that fixes the steps at 13, so that encoding and decoding are the same operation.

« SubstitutionEncoder :The constructor accepts two arguments, pre and post . The string pre is a list of characters to be replaced when
encoding, and string post indicates the things to replace them with. For example, using pre="abcd" and post="1lj4e" would mean that "a"is
supposed to be replaced by "1", "b" by "j", "c" by "4", and so on.

= Be careful writing the encoder so that you don't replace things twice. For example pre="abc" and post="bca" should encode "banana" to
"cbnbnb", and not "ccnenc”.
= You can assume that pre and post contain the same f‘haracter[Tt in a diff; der If that's not the case, then it wa be impossible to
a

ensure that decoding after encoding always gives the ¢ glna'e O r m a tte te Xt

You can find some test code below. The test code assumes all of the classes are in the global scope.

In []: E = RotateEncoder(5)
s = E.encode("Hello world!") # Mjgqt btwqi!
print(s) # Mjgqt btwgi!
print(E.decode(s)) # Hello world!

F = SubstitutionEncoder("lmno","nolm")
s = F.encode("Hello everyone!")

print(s) # Hennm everymle!
print(F.decode(s)) # Hello everyone!

MCS 275 uses notebooks for homework, worksheets,
and project descriptions, so you've seen these before.

But you usually see a version converted to HTML.

WHAT NOTEBOOKS LOOK LIKE

3. Cipher class hierarchy

Build a module encoders (in encoders.py) containing classes for simple ciphers (or codes; ways of obscuring the contents of a string that can be
undone later by the intended recipient).

There should be a base class BaseEncoder that has two methods:

« encode(self,text) :Returnsthe string text unchanged. Subclasses will alter this behavior.
« decode(self,text) :Returnsthe string text unchanged. Subclasses will alter this behavior.

It should be the case that obj.decode(obj.encode(s)) == s istrue for any string S , and for any object 0bj thatis an instance of
BaseEncoder or subclass thereof.

Then, build subclasses of BaseEncoder that implement encoding and decoding by different ciphers, including:

. RotateEncoder : Encoding rotates letters in the alphabet forward by a certain number of steps, e.g. so rotation by 5 turns "a" into "f* and "z" into "e"
(because we wrap around when we reach the end of the alphabet). No transformation is applied to characters other than capital and lower case letters.
Constructor accepts an integer, specifying the number of steps to rotate.

« Rotl3Encoder :Asubclass of RotateEncoder that fixes the steps at 13, so that encoding and decoding are the same operation.

« SubstitutionEncoder :The constructor accepts two arguments, pre and post . The string pre is a list of characters to be replaced when
encoding, and string post indicates the things to replace them with. For example, using pre="abcd" and post="1j4e" would mean that "a" is
supposed to be replaced by "1", "b" by "j", "c¢" by "4", and so on.

= Be careful writing the encoder so that you don't replace things twice. For example pre="abc" and post="bca" should encode "banana" to
"cbnbnb", and not "ccnenc”.

= You can assume that pre and post contain the same characters but in a different order. If that's not the case, then it would be impossible to
ensure that decoding after encoding always gives the original text back again.

You can find some test code below. The test code assumes all of the classes are in the global scope.

In []: | E = RotateEncoder(5)
s = E.encode("Hello world!") # Mjgqt btwqi!
print(s) # Mjgqt btwgi!
print(E.decode(s)) # Hello world!

F = SubstitutionEncoder("1lmno", "nolm") Ce l l Of CO d e

s = F.encode("Hello everyone!")
print(s) # Hennm everymle!
print(F.decode(s)) # Hello everyone!

MCS 275 uses notebooks for homework, worksheets,
and project descriptions, so you've seen these before.

But you usually see a version converted to HTML.

HOW TO USE NOTEBOOKS

Several options:

e Google Colab — Web tool to create, edit, run
notebooks. Need a Google account. Can save or
download notebooks.

e Otheronline provider, e.g. Kaggle, CoCalc

e Jupyter — Software you install locally to create,
edit, run notebooks. Browser shows the Ul.
Previously called IPython.

e VS Code — Has an extension for handling notebook
files.

https://colab.research.google.com/
https://www.kaggle.com/notebooks
https://cocalc.com/
https://jupyter.org/

JUPYTER INSTALL INSTRUCTIONS

Most users can install Jupyter using pip:

python3 -m pip install notebook

Then run the interface with:

python3 -m notebook

Of course, you need to replace python3 with your
Interpreter name.

USING COLAB / JUPYTER

A few of the many keyboard shortcuts:

e shift-enter — run the current cell

e escape — switch from cell editing to navigation

e a —innavmode, add a new cell ABOVE this one

e b —innav mode,add a new cell BELOW this one

e dd — in Jupyter, in nav mode, delete current cell
(colab has a delete button, and a different shortcut)

e m — in Jupyter, in nav mode, make current cell a
Markdown (text) cell

JUPYTER PITFALLS

The notebook interface is stateful: Behavior depends
on the cells that have been evaluated so far.

If you open a previously saved notebook file, you may
see old output. But you need to run all of the cells
again if you want to use those values in the current
session.

Cell execution order matters: Best to make a notebook
thatis meantto run top to bottom.

MARKDOWN

Text cells (Colab) or markdown cells (Jupyter) contain
formatted text. When editing, formatting is specified
with a language called Markdown.

Heading level 1
Heading level 2
Heading level 3

* Bullet list item
* Another bullet list item

1. Numbered list item
1. Another numbered list item

Links: [text to display] (https://example.com)

REFERENCES

Google Colab offers notebook creation, editing, execution (can use netid@uic.edu google
account).

Some other online services allowing free use of Python notebooks: Kaggle, CoCalc

A Markdown guide from GitHub.

REVISION HISTORY

2022-01-26 Last year's lecture on this topic finalized
2023-01-30 Updated version for spring 2023

https://colab.research.google.com/
https://www.kaggle.com/notebooks
https://cocalc.com/
https://guides.github.com/features/mastering-markdown/

