
LECTURE 6
OBJECT-ORIENTED PROGRAMMING

SUBCLASSES AND INHERITANCE II
MCS 275 Spring 2023

Emily Dumas

LECTURE 6: SUBCLASSES AND INHERITANCE II
Reminders and announcements:

 is due Tuesday at Noon.

 is posted. Please read it over to prepare for
discussion in Monday's lecture.

Homework 3

Project 1

https://www.dumas.io/teaching/2023/spring/mcs275/nbview/homework/homework3.html
https://www.dumas.io/teaching/2023/spring/mcs275/nbview/projects/project1.html

PLAN
Finish our robot simulation class hierarchy

Discuss more OOP theory & practice

PLANNED BOT HIERARCHY

✅ WanderBot walks about randomly.

✅DestructBot sits for a while and deactivates.

🟨PatrolBot walks back and forth.

SIMULATION
Instead of manual .update() experiments, there are

two simulation programs:

botsimulation.py - Active bots shown as *

botsimulation_fancy.py - Bots have their own

symbols, inactive ones are shown as ☠.

CLASS ATTRIBUTES
Attributes declared in the class definition, outside of
any method, are class attributes.

Class attributes are shared by every instance of the
class. Often used for constants.

Contrast with the instance attributes we have used
thus far (e.g. self.x = 1 in constructor) which exist

separately for each instance.

PATROLBOT
Takes direction (vector) and n (int). Walks n steps of

size direction, then n steps of size -direction.

Repeats indefinitely.

This robot has internal state:

Whether walking out or coming back
How many steps it has taken in the current direction

FINITE STATE MACHINE
Keep track of which state we're in. Handle input
differently depending on the state. Fixed set of possible
states.

Handlers may change state depending on the input.

if state == "work":

 handle_at_work(sms_content)

elif state == "home":

 handle_at_home(sms_content)

def handle_at_home(sms_content):

 if announces_critical_outage(sms_content):

 send_reply("on my way")

 state = "work"

 else:

 # deal with it tomorrow

 return

FOUR PILLARS OF OOP
Encapsulation - Objects manage their own private,
internal state.

Abstraction - Method calls express intent
(independent of implementation).

Inheritance - Distinct classes can share behavior.

Polymorphism - Code using a class will also work on
its subclasses.

EXTENDING THE SIMULATION
Beyond adding more robot types, how might me
improve or extend the simulation?

EXTENDING THE SIMULATION
Might create a class Arena that manages the list of

bots and the space in which they move. Would have a
single .update() method that updates all bots.

Arena object would be made first, then passed to each

robots constructor. Robots would call Arena methods

to interrogate surroundings (e.g. avoid collision, seek
other bots, ...)

REFERENCES
I discussed inheritance in

See Lutz, Chapter 31 for more discussion of inheritance.

Lutz, Chapters 26-32 discuss object-oriented programming.

REVISION HISTORY
2022-01-24 Last year's lecture on this topic finalized
2023-01-27 Updated version for spring 2023

MCS 260 Fall 2021 Lecture 27

https://www.dumas.io/teaching/2021/fall/mcs260/slides/lecture27.html

