
LECTURE 5
OBJECT-ORIENTED PROGRAMMING

SUBCLASSES AND INHERITANCE
MCS 275 Spring 2023

Emily Dumas

LECTURE 5: SUBCLASSES AND INHERITANCE
Reminders and announcements:

There will be no Homework 2

Homework 3 to be posted Thurs, due Tue Jan 31

Project 1 has new deadline: Fri Feb 10

IMPROVED POINT2 AND VECTOR2
I added new features to our plane module between

lectures. These are explored a bit in Worksheet 3.
Included:

Can multiply Vector2 by integer or �oat

abs(Vector2) gives length

and more...

Photo by (CC-BY-SA)Mike Gogulski

https://commons.wikimedia.org/wiki/File:New_cuyama.jpg

INHERITANCE
Instead of starting a class de�nition from scratch we
can indicate that it should inherit all the methods and
attributes of some other class. Then we only need to
specify the changes.

If new class B inherits from existing class A in this way,

we say:

B is a subclass of A (or child of A)

A is a superclass of B (or parent of B)

WHY SUBCLASS?
Some common reasons:

To change behavior of an existing class
(e.g. a dict that only allows certain kinds of keys)

To avoid duplication by moving common code to a
superclass with several subclasses

To formalize relationships between classes

Subclassing should express an "is-a" relationship. Dog
and Cat might be subclasses of Pet.

PYTHON SUBCLASS SYNTAX
Specify a class name to inherit from in the class
de�nition:

Now, all the methods of the superclass are immediately
available as part of self.

class ClassName(SuperClassName):

 """Docstring of the subclass"""

 # ... subclass contents go here ...

CLASS HIERARCHIES

Inheritance patterns are often shown in diagrams. Lines
represent inheritance, with the superclass appearing
above the subclass (usually).

LIVE CODING
Let's build a class hierarchy for a simple robot
simulation.

Every type of robot will be a subclass of Bot.

Bot has a position (a Point), boolean attribute

active, and method update() to advance one time

step.

Subclasses give the robot behavior (e.g. movement).

PLANNED BOT HIERARCHY

PatrolBot walks back and forth.

WanderBot walks about randomly.

DestructBot sits in one place for a while and then

deactivates.

ROBOT SIMULATION TEMPLATE
We haven't built any of the Bot subclasses yet, but I

have already created:

A start on module bots containing one class Bot. It

sits in one place. In in the sample code

repository.
A script to run the simulation

and show it with simple text-based graphics.

bots.py

botsimulation.py

https://github.com/emilydumas/mcs275spring2023/blob/main/samplecode/oop/bots.py
https://github.com/emilydumas/mcs275spring2023/blob/main/samplecode/oop/botsimulation.py

SUPER()
If you de�ne a method in a subclass, it replaces any
method of the same name in the superclass.

That's usually very helpful. But what if the replacement
wants to call the method it is replacing?

super().method_name(...) is the syntax for this;

it calls method_name(...) of the superclass even if

that method is rede�ned in the subclass.

WARNING
You only need super() under speci�c circumstances:

Superclass and subclass have a method with the same
name, and
In the subclass, you need to call the superclass
version of that method for some reason.

This is rare. More common: Needing to call a method of
the superclass that isn't rede�ned in the subclass.

That's easier: Just use self.method_name(...).

FROM
The from keyword can be used to import individual

symbols from a module into the global scope.

is equivalent to

Please use from very sparingly!

import mymodule

...

mymodule.useful_function() # module name needed

from mymodule import useful_function

...

useful_function() # no module name needed

REFERENCES
I discussed inheritance in

See Lutz, Chapter 31 for more discussion of inheritance.

Lutz, Chapters 26-32 discuss object-oriented programming.

REVISION HISTORY
2022-01-21 Last year's lecture on this topic �nalized
2023-01-25 Updated version for spring 2023

MCS 260 Fall 2021 Lecture 27

https://www.dumas.io/teaching/2021/fall/mcs260/slides/lecture27.html

