
LECTURE 5
OBJECT-ORIENTED

PROGRAMMING
SUBCLASSES AND INHERITANCE

MCS 275 Spring 2023
Emily Dumas

LECTURE 5: SUBCLASSES AND
INHERITANCE

Reminders and announcements:

There will be no Homework 2

Homework 3 to be posted Thurs, due Tue Jan 31

Project 1 has new deadline: Fri Feb 10

IMPROVED POINT2 AND VECTOR2
I added new features to our plane module between
lectures. These are explored a bit in Worksheet 3.
Included:

Can multiply Vector2 by integer or float
abs(Vector2) gives length
and more...

Photo by (CC-BY-SA)Mike Gogulski

https://commons.wikimedia.org/wiki/File:New_cuyama.jpg

INHERITANCE
Instead of starting a class definition from scratch we
can indicate that it should inherit all the methods and
attributes of some other class. Then we only need to
specify the changes.

If new class B inherits from existing class A in this way,
we say:

B is a subclass of A (or child of A)
A is a superclass of B (or parent of B)

WHY SUBCLASS?
Some common reasons:

To change behavior of an existing class
(e.g. a dict that only allows certain kinds of keys)

To avoid duplication by moving common code to a
superclass with several subclasses

To formalize relationships between classes

Subclassing should express an "is-a" relationship. Dog
and Cat might be subclasses of Pet.

PYTHON SUBCLASS SYNTAX
Specify a class name to inherit from in the class
definition:

Now, all the methods of the superclass are
immediately available as part of self.

class ClassName(SuperClassName):

 """Docstring of the subclass"""

 # ... subclass contents go here ...

CLASS HIERARCHIES

Inheritance patterns are often shown in diagrams.
Lines represent inheritance, with the superclass
appearing above the subclass (usually).

LIVE CODING
Let's build a class hierarchy for a simple robot
simulation.

Every type of robot will be a subclass of Bot.

Bot has a position (a Point), boolean attribute
active, and method update() to advance one time
step.

Subclasses give the robot behavior (e.g. movement).

PLANNED BOT HIERARCHY

PatrolBot walks back and forth.
WanderBot walks about randomly.
DestructBot sits in one place for a while and
then deactivates.

ROBOT SIMULATION TEMPLATE
We haven't built any of the Bot subclasses yet, but I
have already created:

A start on module bots containing one class Bot. It
sits in one place. In in the sample code
repository.
A script to run the
simulation and show it with simple text-based
graphics.

bots.py

botsimulation.py

https://github.com/emilydumas/mcs275spring2023/blob/main/samplecode/oop/bots.py
https://github.com/emilydumas/mcs275spring2023/blob/main/samplecode/oop/botsimulation.py

SUPER()
If you define a method in a subclass, it replaces any
method of the same name in the superclass.

That's usually very helpful. But what if the
replacement wants to call the method it is replacing?

super().method_name(...) is the syntax for
this; it calls method_name(...) of the superclass
even if that method is redefined in the subclass.

WARNING
You only need super() under specific circumstances:

Superclass and subclass have a method with the
same name, and
In the subclass, you need to call the superclass
version of that method for some reason.

This is rare. More common: Needing to call a method
of the superclass that isn't redefined in the subclass.

That's easier: Just use self.method_name(...).

FROM
The from keyword can be used to import individual
symbols from a module into the global scope.

is equivalent to

Please use from very sparingly!

import mymodule

...

mymodule.useful_function() # module name needed

from mymodule import useful_function

...

useful_function() # no module name needed

REFERENCES
I discussed inheritance in

See Lutz, Chapter 31 for more discussion of inheritance.

Lutz, Chapters 26-32 discuss object-oriented programming.

REVISION HISTORY
2022-01-21 Last year's lecture on this topic finalized
2023-01-25 Updated version for spring 2023

MCS 260 Fall 2021 Lecture 27

https://www.dumas.io/teaching/2021/fall/mcs260/slides/lecture27.html

