
LECTURE 38
USING BEAUTIFUL SOUP

MCS 275 Spring 2023
David Dumas

Not this kind of beautiful soup

LECTURE 38: USING BEAUTIFUL SOUP
Reminders and announcements:

Please complete your course evaluations.

Project 4 is due

Remember to install beautifulsoup4 with

so you'll be ready for Worksheet 15!

6pm on Friday 28 April

python3 -m pip install beautifulsoup4

https://www.tickcounter.com/countdown/4038844/mcs-275-project-4-due

HOMEWORK 14
Available now. Due Tuesday at Noon. It's the last
homework!

BS4 BASICS
soup = bs4.BeautifulSoup(fp_or_str, "html.parser") # parse!
str(soup) # the HTML
soup.prettify() # prettier HTML
soup.title # first (and only) title tag
soup.p # first p tag
soup.find("p") # first p tag (alternative)
soup.p.em # first em tag within the first p tag
soup.find_all("a") # list of all a tags

WORKING WITH TAGS
str(tag) # HTML for this tag and everything inside it
tag.name # name of the tag, e.g. "a" or "ul"
tag.attrs # dict of tag's attributes
tag["href"] # get a single attribute
tag.text # All the text nodes inside tag, concatenated
tag.string # If tag has only text inside it, returns that text
 # But if it has other tags as well, returns None
tag.parent # enclosing tag
tag.contents # list of the children of this tag
tag.children # iterable of children of this tag
tag.banana # first descendant banana tag (sub actual tag name!
tag.find(...) # first descendant meeting criteria
tag.find_all(...) # descendants meeting criteria
tag.find_next_sibling(...) # next sibling tag meeting criteria

SEARCHING
Arguments supported by all the find* methods:

Also work with find(), find_next_sibling(),
...

tag.find_all(True) # all descendants
tag.find_all("tagname") # descendants by tag name
tag.find_all(href="https://example.com/") # by attribute
tag.find_all(class_="post") # by class
tag.find_all(re.compile("^fig")) # tag name regex match
tag.find_all("a",limit=15) # first 15 a tags
tag.find_all("a",recursive=False) # all a *children*

SIMULATING CSS
soup.select(SELECTOR) returns a list of tags
that match a CSS selector, e.g.

There are many CSS selectors and functions we
haven't discussed, so this gives a powerful alternative
search syntax.

soup.select(".wide") # all tags of class "wide"

ul tags within divs of class messagebox
soup.select("div.messagebox ul")

all third elements of unordered lists
soup.select("ul > li:nth-of-type(3)")

The CSS selector examples here were based on those
in the Beautiful Soup documentation.

SKETCH OF A SCRAPER
from urllib.request import urlopen
from bs4 import BeautifulSoup
import csv

grab and parse the HTML
with urlopen("https://acme-onions.com/strategy/") as fp:
 soup = BeautifulSoup(fp,"html.parser")

find the div we care about
plansdiv = soup.find("div",id="secret_plans")

save all links in that div to a CSV file
with open("plan_links.csv") as outfile:
 writer = csv.writer(outfile)
 writer.writerow(["dest","linktext"])
 for anchor in plansdiv.find_all("a"):
 writer.writerow([anchor["href"], anchor.text])

EXAMPLE SCRAPER
Let's try to extract data about

.
the UIC academic

calendar

https://catalog.uic.edu/ucat/academic-calendar/

HTML TABLES
HTML table tag represents a table made up of
rectangular cells arranged in aligned rows and
columns.

HTML TABLES
HTML table tag represents a table made up of
rectangular cells arranged in aligned rows and
columns.

HTML TABLES
HTML table tag represents a table made up of
rectangular cells arranged in aligned rows and
columns.

HTML TABLES
HTML table tag represents a table made up of
rectangular cells arranged in aligned rows and
columns.

HTML TABLE TAGS
table - entire table
tr - row (inside a table)
td - data cell (inside a row)
th - header cell (inside a row)

SCRAPER TIPS
Develop using a local snapshot of the HTML

Avoid complicated transformation at first; try to
faithfully extract the data into a structured format

Be mindful of maintenance cost (e.g. time); keeping
a scraper working as a site that changes over time is
difficult. Does size/value of data justify it? [,]

Try to minimize dependence on markup details that
seem most likely to change

1 2

https://xkcd.com/1319/
https://xkcd.com/1205/

REFERENCES

The is beautifully clear.

REVISION HISTORY
2023-04-22 Last year's lecture on this topic finalized
2023-04-20 Updated for 2023

urllib documentation

Beautiful Soup documentation

https://docs.python.org/3.8/library/urllib.html
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

