
LECTURE 37
PARSING AND SCRAPING HTML

MCS 275 Spring 2023
Emily Dumas

LECTURE 37: PARSING AND SCRAPING HTML
Reminders and announcements:

 is due 6pm CDT Friday 28 April.

Please install beautifulsoup4 with

I added
 (without writing it to a

file).

Project 4

python3 -m pip install beautifulsoup4

a demo program that shows how to generate
and serve an image in Flask

https://www.dumas.io/teaching/2023/spring/mcs275/nbview/projects/project4.html
https://github.com/emilydumas/mcs275spring2023/blob/main/samplecode/html/flaskimage/imagedemo.py
https://github.com/emilydumas/mcs275spring2023/blob/main/samplecode/html/flaskimage/imagedemo.py

GETTING DATA FROM THE WEB
APIs that directly serve machine-readable, typed data
are the best way to bring data from an external service
into your programs.

Extracting data from HTML — a language for making
human-readable documents — should be considered a
last resort.

TODAY
We discuss what you can do if:

There is no API, but there is HTML containing the
data you need, or
The structure of an HTML document is the data.

SIMPLE HTML PROCESSING
Level 0: Treat HTML as a string. Do string things.

Level 1: Treat HTML as a stream of tags, attributes, and
text. Have a HTML parser recognize them and tell you
what it finds. is good for this.

These approaches handle huge documents efficiently,
but make nontrivial data extraction quite complex.

html.parser

https://docs.python.org/3/library/html.parser.html

HTML DOCUMENT AS AN OBJECT
Level 2: Use a higher-level HTML data extraction
framework like , , or .

These frameworks create a data structure that
represents the entire document, supporting various
kinds of searching, traversal, and extraction.

Note that the whole document needs to fit in memory.

Beautiful Soup Scrapy Selenium

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://scrapy.org/
https://selenium-python.readthedocs.io/

DOM
The Document Object Model or DOM is a language-
independent model for representing a HTML document
as a tree of nodes.

Each node represents part of the document, such as a
tag, an attribute, or text appearing inside a tag.

The has rules for for naming,
accessing, and modifying parts of a document.
JavaScript fully implements this specification.

formal specification

https://dom.spec.whatwg.org/

Adapted from DOM illustration by (CC-BY-SA).

<html><head><title>My title</title></head><body><h1>A heading</h1>

Link text</body></html>

Birger Eriksson

https://commons.wikimedia.org/wiki/File:DOM-model.svg

Adapted from DOM illustration by (CC-BY-SA).

<p>I reallylike Python.</p>

Birger Eriksson

https://commons.wikimedia.org/wiki/File:DOM-model.svg

BEAUTIFUL SOUP
This package provides a module called bs4 for turning

HTML into a DOM-like data structure.

Widely used, e.g. at one point Reddit's backend
software used it to select a representative image from a

web page when a URL appeared in a post*.

Requires an HTML parser. We'll use html.parser

from the standard library, but beautiful soup supports
others.

* As of . Perhaps they still use it?2014

https://github.com/reddit/reddit/blob/85f9cff3e2ab9bb8f19b96acd8da4ebacc079f04/r2/r2/lib/media.py

MINIMAL SOUP
Parse HTML file into DOM:

from bs4 import BeautifulSoup

with open("lecture37.html") as fobj:

 soup = BeautifulSoup(fobj,"html.parser")

MINIMAL SOUP
Parse web page into DOM:

Be careful about the
.

from urllib.request import urlopen

from bs4 import BeautifulSoup

with urlopen("https://example.com/") as response:

 soup = BeautifulSoup(response,"html.parser")

ethics of connecting to web
servers from programs

SCRAPING AND SPIDERS
A program that extracts data from HTML is a scraper

A program that visits all pages on a site is a spider.

All forms of automated access should:

Allow the site to prioritize human users.
Limit frequency of requests.
Respect a site's Terms of Service (TOS).
Respect the site's automated access
exclusion file, if they have one.

robots.txt

https://en.wikipedia.org/wiki/Robots_exclusion_standard

MINIMAL SOUP
Parse string into DOM:

from bs4 import BeautifulSoup

soup = BeautifulSoup(

 "<p>The coffee was strong.</p>",

 "html.parser"

)

BS4 BASICS
str(soup) # show as HTML

soup.prettify() # prettier HTML

soup.title # first (and only) title tag

soup.p # first p tag

soup.find("p") # first p tag (alternative)

soup.p.strong # first strong tag within the first p tag

soup.find_all("a") # list of all a tags

WORKING WITH TAGS
str(tag) # HTML for this tag and everything inside it

tag.name # name of the tag, e.g. "a" or "ul"

tag.attrs # dict of tag's attributes

tag["href"] # get a single attribute

tag.text # All the text nodes inside tag, concatenated

tag.string # If tag has only text inside it, returns that text

 # But if it has other tags as well, returns None

tag.parent # enclosing tag

tag.contents # list of the children of this tag

tag.children # iterable of children of this tag

tag.banana # first descendant banana tag (sub actual tag name!)

tag.find(...) # first descendant meeting criteria

tag.find_all(...) # descendants meeting criteria

tag.find_next_sibling(...) # next sibling tag meeting criteria

SEARCHING
Arguments supported by all the find* methods:

Also work with find(), find_next_sibling(), ...

tag.find_all(True) # all descendants

tag.find_all("tagname") # descendants by tag name

tag.find_all(href="https://example.com/") # by attribute

tag.find_all(class_="post") # by class

tag.find_all(re.compile("^fig")) # tag name regex match

tag.find_all("a",limit=15) # first 15 a tags

tag.find_all("a",recursive=False) # all a *children*

SIMULATING CSS
soup.select(SELECTOR) returns a list of tags that

match a CSS selector, e.g.

There are many CSS selectors and functions we haven't
discussed, so this gives a powerful alternative search
syntax.

soup.select(".wide") # all tags of class "wide"

ul tags within divs of class messagebox

soup.select("div.messagebox ul")

all third elements of unordered lists

soup.select("ul > li:nth-of-type(3)")

REFERENCES

The is beautifully clear.

REVISION HISTORY
2022-04-20 Last year's lecture on this topic finalized
2023-04-19 Updated for 2023

urllib documentation

Beautiful Soup documentation

https://docs.python.org/3.8/library/urllib.html
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

