
LECTURE 36
HTTP REQUESTS

MCS 275 Spring 2023
Emily Dumas

LECTURE 36: HTTP REQUESTS
Reminders and announcements:

Project 4 is due 6pm CDT Friday 28 April.

Prepare for Wednesday: Install beautifulsoup4

with
python3 -m pip install beautifulsoup4

SWITCHING SIDES
Recently, we've talked a lot about making HTTP servers
in Python (e.g. web applications).

This week we'll switch to talking about Python as an
HTTP client, parsing HTML, and extracting data
(scraping).

URLS
A Uniform Resource Locator or URL speci�es the
location of a "resource", such as a document, a data �le,
or a coffee machine.

Basic structure is

Everything after hostname is optional.

Sample URL:

protocol://hostname[:port]/path/filename?nam=val&nam2=val2

https://www.dumas.io/teaching/2023/spring/mcs275/slides/lecture36

DECODING A URL

Protocol is HTTPS (which is HTTP over an encrypted
connection)
Hostname is www.dumas.io

Path is
/teaching/2023/spring/mcs275/slides/

Filename is lecture36.html

No query parameters

https://www.dumas.io/teaching/2023/spring/mcs275/slides/lecture36

URLLIB
Module can retrieve resources from URLs.

E.g., it can open a �le if you give it a file:// URL.

Most often it is used to make HTTP and HTTPS GET
requests, to retrieve web pages from web servers and
data from HTTP APIs.

urllib.request.urlopen(url) retrieves the

resource and returns a �le-like object

urllib

https://docs.python.org/3/library/urllib.html

HTTP RESPONSE
Response consists of a numeric status code, some
headers (an associative array), then a body or payload.

E.g. GET a web page, the HTML will be in the body.

There are ; �rst digit gives category:

2xx — success
3xx — redirection; more action required (e.g. moved)
4xx — client error; your request has a problem
5xx — server error; cannot handle this valid request

Formal de�nition of the response structure is in .

lots of codes

RFC 2616

https://httpstatuses.com/
https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

PARTS OF A HTTP RESPONSE
Response to GET http://example.com/

PARTS OF A HTTP RESPONSE
Response to GET http://example.com/

URLOPEN RETURN VALUE
x = urllib.request.urlopen(URL) returns an

object that makes available:

The status code as x.status

The headers as x.headers

The payload as x.read() (or use x where a �le

object is expected)

HTTP BODY VS HTML BODY
An HTTP request has several parts, the last of which is
the body/payload (an array of bytes).

Often, the body is an HTML document.

An HTML document has several parts, one of which is
the body (contained in the tag <body>).

GET DATA FROM AN API
Use the to get a suggestion of an
activity.

Bored JSON API

import json

from urllib.request import urlopen

with urlopen("https://www.boredapi.com/api/activity") as r:

 # treat payload as file, process as JSON

 data = json.load(r)

print("Maybe you could... ",data["activity"])

https://www.boredapi.com/

GET A WEB PAGE

This gives the body as a bytes object (an array of

integers in the range 0...255).

If you want a string, you need to know the encoding.

And it might not be HTML! Can check r.headers.get_content_type() or

r.headers["content-type"].

from urllib.request import urlopen

with urlopen("https://example.com/") as r:

 html_bytes = r.read()

GET A WEB PAGE

The encoding is usually speci�ed in the Content-Type header, but this is not actually
required.

from urllib.request import urlopen

with urlopen("https://example.com/") as r:

 html_bytes = r.read()

 # Determine encoding from Content-Type header

 # (recommended)

 charset = r.headers.get_content_charset()

 html = html_bytes.decode(charset)

GET A WEB PAGE
from urllib.request import urlopen

with urlopen("https://example.com/") as r:

 html_bytes = r.read()

 # Determine encoding, using utf-8 if the

 # server didn't give a Content-Type header

 charset = r.headers.get_content_charset(failobj="utf-8")

 html = html_bytes.decode(charset)

GETTING DATA FROM THE WEB
HTML is a language for making documents, meant to be
displayed to humans. Avoid having programs read
HTML if at all possible.

Web pages often contain data that might be useful to a
computer program.

The same data is often available in a structured format
meant for consumption by programs, e.g. through an
API that returns a JSON object.

What do you do if there is no API, and you need to
extract information from an HTML document?

Sigh with exasperation, then...

HTML PARSING
Level 0: Treat the HTML document as a string and use
search operations (str.find or regexes) to locate

something you care about, like <title>.

HTML is complicated, and this approach is very error-
prone.

HTML PARSING
Level 1: Use a parser that knows how to recognize
start/end tags, attributes, etc., and tell it what to do
when it �nds them (e.g. call this function...)

 is in the standard library.

This approach is event-based. You specify functions to
handle things when they are found, but you don't get an
overall picture of the entire document.

html.parser

https://docs.python.org/3/library/html.parser.html

HTML PARSING
Level 2: Use a higher-level HTML data extraction
framework like , , or .

These frameworks create a data structure that
represents the entire document, supporting various
kinds of searching, traversal, and extraction.

Beautiful Soup Scrapy Selenium

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://scrapy.org/
https://selenium-python.readthedocs.io/

REFERENCES

REVISION HISTORY
2022-04-20 Last year's lecture on this topic �nalized
2023-04-17 Updated for 2023

The urllib documentation

Examples of using urllib.request

Beautiful Soup home page

MCS 260 Fall 2020 Lecture 34 - Requesting URLs in Python

A list of some public APIs

https://docs.python.org/3.8/library/urllib.html
https://docs.python.org/3.8/library/urllib.request.html#examples
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.dumas.io/teaching/2020/fall/mcs260/slides/lecture34.html#/
https://github.com/public-apis/public-apis

