LECTURE 36

HTTP REQUESTS

MCS 275 Spring 2023
Emily Dumas

LECTURE 36: HTTP REQUESTS
Reminders and announcements:
e Project4isdue 6pm CDT Friday 28 April.

e Prepare for Wednesday: Install beautifulsoup4
with

python3 -m pip install beautifulsoup4

SWITCHING SIDES

Recently, we've talked a lot about making HTTP
servers in Python (e.g. web applications).

This week we'll switch to talking about Python as an
HTTP client, parsing HTML, and extracting data

(scraping).

URLS

A Uniform Resource Locator or URL specifies the

location of a "resource", such as a document, a data
file, or a coffee machine.

Basic structure is

protocol://hostname|:port]/path/filename?nam=val&nam2=val?
Everything after hosthame is optional.

Sample URL:

https://www.dumas.io/teaching/2023/spring/mcs275/slides/lectur

DECODING A URL

https://www.dumas.io/teaching/2023/spring/mcs275/slides/lectur

Protocolis HTTPS (which is HTTP over an encrypted
connection)

Hostname is www.dumas. 1o

Path is
/teaching/2023/spring/mcs275/slides/
Filenameis lecture36.html

No query parameters

URLLIB

Module ur1l1ib can retrieve resources from URLs.

E.g.,itcan open afileifyougiveitafile:// URL.

Most often itis used to make HTTP and HTTPS GET
requests, to retrieve web pages from web servers and
data from HTTP APIs.

urllib.request.urlopen (url) retrieves the
resource and returns a file-like object

https://docs.python.org/3/library/urllib.html

HTTP RESPONSE

Response consists of a numeric status code, some
headers (an associative array), then a body or
payload.

E.g. GET a web page, the HTML will be in the body.
There are lots of codes; first digit gives category:

® XX — Success

e 3xx — redirection; more action required (e.g.
moved)

e 4xx — client error; your request has a problem

e 5xx — server error; cannot handle this valid request

https://httpstatuses.com/

Formal definition of the response structure is in RFC
2616.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

PARTS OF AHTTP RESPONSE

Response to GET http://example.com/

HTTP/1.1 200 OK

Age: 309829

Cache-Control: max—-age=604800

Content-Type: text/html; charset=UTF-8

Date: Mon, 19 Apr 2021 03:40:44 GMT

Expires: Mon, 26 Apr 2021 03:40:44 GMT
Last-Modified: Thu, 17 Oct 2019 07:18:26 GMT
Server: ECS (ord/572F)

Vary: Accept-Encoding

Content-Length: 1256

<!doctype html>
<html>
<head>
<title>Example Domain</title>

PARTS OF AHTTP RESPONSE

Responseto GET http://example.com/

L Status line with response code
HTTP/1.1 200 OK
Age: 309829
Cache-Control: max—-age=604800
Content-Type: text/html; charset=UTF-8
Date: Mon, 19 Apr 2021 03:40:44 GMT
Expires: Mon, 26 Apr 2021 03:40:44 GMT Headers .
Last-Modified: Thu, 17 Oct 2019 07:18:26 GMT "key: value", one per line
Server: ECS (ord/572F)
Vary: Accept-Encoding
Content-Length: 1256]]

- Required blank line
<!doctype html>
<html>
<head>

<tjtle>Example Domain</title> PaYIoad

A sequence of bytes

URLOPEN RETURN VALUE

X = urllib.request.urlopen (URL) returns
an object that makes available:

e Thestatuscodeas x.status

e The headers as x.headers

e The payload as x.read () (oruse x where afile
object is expected)

HTTP BODY VS HTML BODY

An HTTP request has several parts, the last of which is
the body/payload (an array of bytes).

Often, the body is an HTML document.

An HTML document has several parts, one of which is
the body (contained in the tag <body>).

GET DATA FROM AN API

Use the Bored JSON API to get a suggestion of an
activity.

import json
from urllib.request import urlopen

with urlopen ("https://www.boredapi.com/api/activity") as r:
treat payload as file, process as JSON
data = json.load(r)

print ("Maybe you could... ",data["activity"])

https://www.boredapi.com/

GET A WEB PAGE

from urllib.request 1mport urlopen

with urlopen ("https://example.com/") as r:
html bytes = r.read()

This gives the body as a bytes object (an array of
integers in the range 0...255).

If you want a string, you need to know the encoding.

And it might not be HTML! Can check
r.headers.get content type() or

r.headers["content-type"].

GET A WEB PAGE

from urllib.request import urlopen

with urlopen ("https://example.com/") as r:
html bytes = r.read()

Determine encoding from Content-Type header
(recommended)

charset = r.headers.get content charset()
html = html bytes.decode (charset)

The encoding is usually specified in the Content-Type
header, but this is not actually required.

GET A WEB PAGE

from urllib.request import urlopen

with urlopen ("https://example.com/") as r:
html bytes = r.read()
Determine encoding, using utf-8 if the
server didn't give a Content-Type header
charset = r.headers.get content charset (failobj="utf-8")
html = html bytes.decode (charset)

GETTING DATA FROM THE WEB

HTML is a language for making documents, meant to

ne displayed to humans. Avoid having programs read
HTML if at all possible.

Web pages often contain data that might be useful to a
computer program.

The same data is often available in a structured format
meant for consumption by programs, e.g. through an
API that returns a JSON object.

What do you do if there is no API, and you need to
extract information from an HTML document?

Sigh with exasperation, then...

HTML PARSING

Level 0: Treat the HTML document as a string and use
search operations (str. find or regexes) to locate
something you care about, like <title>.

HTML is complicated, and this approach is very error-
prone.

HTML PARSING

Level 1: Use a parser that knows how to recognize
start/end tags, attributes, etc., and tell it what to do
when it finds them (e.g. call this function...)

html .parserisinthe standard library.

This approach is event-based. You specify functions to
handle things when they are found, but you don't get
an overall picture of the entire document.

https://docs.python.org/3/library/html.parser.html

HTML PARSING

Level 2: Use a higher-level HTML data extraction
framework like Beautiful Soup, Scrapy, or Selenium.

These frameworks create a data structure that
represents the entire document, supporting various
kinds of searching, traversal, and extraction.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://scrapy.org/
https://selenium-python.readthedocs.io/

REFERENCES

The urllib documentation

Examples of using urllib.request

Beautiful Soup home page

MCS 260 Fall 2020 Lecture 34 - Requesting URLs in Python
A list of some public APIs

REVISION HISTORY

2022-04-20 Last year's lecture on this topic finalized
2023-04-17 Updated for 2023

https://docs.python.org/3.8/library/urllib.html
https://docs.python.org/3.8/library/urllib.request.html#examples
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.dumas.io/teaching/2020/fall/mcs260/slides/lecture34.html#/
https://github.com/public-apis/public-apis

