
LECTURE 35
ANONYMOUS FUNCTIONS AND

DECORATORS
MCS 275 Spring 2023

David Dumas

LECTURE 35: VARIADIC FUNCTIONS AND DECORATORS
Reminders and announcements:

Today is the deadline to receive approval on Project 4
custom (non-SQLite) topics.

Homework 13 available.

FUNCTIONS
As you know, functions can be de�ned with the def

keyword:

After this de�nition, name f refers to a function object.

Thus we've created a function with a name.

def f(x):

 "Compute the square of `x`"

 return x*x

LAMBDA
In Python, you can create a function with no name—an
anonymous function—using the syntax:

lambda x: x*x # takes x, returns x*x

lambda x,y: x-y # takes x and y, returns value x-y

lambda then evaluates to a function object, so the

expression

behaves just like the name

if you previously de�ned

lambda x,y: x-y

diff

def diff(x,y):

 return x-y

WHEN TO USE LAMBDA
Functions de�nitely deserve names if they are used in
several places, or if they are complicated.

But lambda is good for simple functions used once.

Then, the de�nition and the only place of use are not
separated.

COMMON USE FOR LAMBDA
The built-in functions max, min, and list.sort

accept a keyword argument key that is a function

which is applied to elements before making
comparisons.

e.g. if L is a list of words, then max(L,key=len) is the

longest word.

FUNCTION ARGUMENTS
Functions in Python can accept functions as arguments.

def dotwice(f):

 """Call function f twice"""

 f()

 f()

A better version works with functions that accept
arguments:

Here, *args means any number of positional

arguments, and **kwargs means any number of

keyword arguments.

def dotwice(f,*args,**kwargs):

 """Call function f twice (allowing arguments)"""

 f(*args,**kwargs)

 f(*args,**kwargs)

RETURNING FUNCTIONS
Functions in Python can return functions. Often this is
used to make "function factories".

def power_function(n):

 def inner(x): # function inside a function!

 """Raise x to a power"""

 return x**n

 return inner

MODIFYING FUNCTIONS
def return_twice_doer(f):

 """Return a new function which calls f twice"""

 def inner(*args,**kwargs):

 """Call a certain function twice"""

 f(*args,**kwargs)

 f(*args,**kwargs)

 return inner

REPLACING FUNCTIONS
In some cases we might want to replace an existing
function with a modi�ed version of it (e.g. as returned
by some other function).

def g(x):

 """Print the argument with a message"""

 print("Function got value",x)

actually, I wanted to always print that message twice!

g = return_twice_doer(g)

DECORATOR SYNTAX
There is a shorter syntax to replace a function with a
modi�ed version.

is equivalent to

The symbol @modifier (or any @name) before a

function de�nition is called a decorator.

@modifier

def fn(x,y):

 """Function body goes here"""

def fn(x,y):

 """Function body goes here"""

fn = modifier(fn)

RETURNING VALUES
Usually, the inner function of a decorator should return
the value of the (last) call to the argument function.

def return_twice_doer(f):

 """Return a new function which calls f twice"""

 def inner(*args,**kwargs):

 """Call a certain function twice"""

 f(*args,**kwargs)

 return f(*args,**kwargs)

 return inner

DECORATOR ARGUMENTS
Python allows @name(arg1,arg2,...).

In that case, name should be a decorator factory.

E.g.

is equivalent to

Note a decorator factory is a function that returns a
function that return a function!

@dec(2)

def printsq(x):

 print(x*x)

thisdec = dec(2)

@thisdec

def printsq(x):

 print(x*x)

A FEW BUILT-IN DECORATORS
@functools.lru_cache(100) — Memoize up to

100 recent calls to a function.*

@classmethod — Make a method a class method

(callable from the class itself, gets class as �rst
argument). E.g. for alternate constructors.
@atexit.register — Make sure this function is

called just before the program exits.

* In Python 3.9+ there is also the simpler functools.cache decorator which stores an

unlimited number of past function calls..

MULTIPLE DECORATORS
Allowed. Each must be on its own line.

replaces f with dec1(dec2(dec3(f))).

So the decorator closest to the function name acts �rst.

@dec1

@dec2

@dec3

def f(x):

 """Function body goes here"""

REFERENCES
See Lutz, Chapter 18 for more about *args and **kwargs.

See Lutz, Chapter 39 for a detailed discussion of Python decorators.

See Beazley & Jones, Chapter 9 for several examples of decorators.

ACKNOWLEDGMENT
When preparing an earlier version of this lecture, I reviewed course materials by Danko
Adrovic and Jan Verschelde (other MCS instructors).

REVISION HISTORY
2022-01-26 Last year's lecture on this topic �nalized
2023-04-13 Updated for 2023

