
LECTURE 35
ANONYMOUS FUNCTIONS AND

DECORATORS
MCS 275 Spring 2023

David Dumas

LECTURE 35: VARIADIC FUNCTIONS AND
DECORATORS

Reminders and announcements:

Today is the deadline to receive approval on Project
4 custom (non-SQLite) topics.

Homework 13 available.

FUNCTIONS
As you know, functions can be defined with the def
keyword:

A�er this definition, name f refers to a function object.
Thus we've created a function with a name.

def f(x):

 "Compute the square of `x`"

 return x*x

LAMBDA
In Python, you can create a function with no name—an
anonymous function—using the syntax:

lambda x: x*x # takes x, returns x*x

lambda x,y: x-y # takes x and y, returns value x-y

lambda then evaluates to a function object, so the
expression

behaves just like the name

if you previously defined

lambda x,y: x-y

diff

def diff(x,y):

 return x-y

WHEN TO USE LAMBDA
Functions definitely deserve names if they are used in
several places, or if they are complicated.

But lambda is good for simple functions used once.
Then, the definition and the only place of use are not
separated.

COMMON USE FOR LAMBDA
The built-in functions max, min, and list.sort
accept a keyword argument key that is a function
which is applied to elements before making
comparisons.

e.g. if L is a list of words, then max(L,key=len) is
the longest word.

FUNCTION ARGUMENTS
Functions in Python can accept functions as
arguments.

def dotwice(f):

 """Call function f twice"""

 f()

 f()

A better version works with functions that accept
arguments:

Here, *args means any number of positional
arguments, and **kwargs means any number of
keyword arguments.

def dotwice(f,*args,**kwargs):

 """Call function f twice (allowing arguments)"""

 f(*args,**kwargs)

 f(*args,**kwargs)

RETURNING FUNCTIONS
Functions in Python can return functions. O�en this is
used to make "function factories".

def power_function(n):

 def inner(x): # function inside a function!

 """Raise x to a power"""

 return x**n

 return inner

MODIFYING FUNCTIONS
def return_twice_doer(f):

 """Return a new function which calls f twice"""

 def inner(*args,**kwargs):

 """Call a certain function twice"""

 f(*args,**kwargs)

 f(*args,**kwargs)

 return inner

REPLACING FUNCTIONS
In some cases we might want to replace an existing
function with a modified version of it (e.g. as returned
by some other function).

def g(x):

 """Print the argument with a message"""

 print("Function got value",x)

actually, I wanted to always print that message twice!

g = return_twice_doer(g)

DECORATOR SYNTAX
There is a shorter syntax to replace a function with a
modified version.

is equivalent to

The symbol @modifier (or any @name) before a
function definition is called a decorator.

@modifier

def fn(x,y):

 """Function body goes here"""

def fn(x,y):

 """Function body goes here"""

fn = modifier(fn)

RETURNING VALUES
Usually, the inner function of a decorator should
return the value of the (last) call to the argument
function.

def return_twice_doer(f):

 """Return a new function which calls f twice"""

 def inner(*args,**kwargs):

 """Call a certain function twice"""

 f(*args,**kwargs)

 return f(*args,**kwargs)

 return inner

DECORATOR ARGUMENTS
Python allows @name(arg1,arg2,...).

In that case, name should be a decorator factory.

E.g.

is equivalent to

Note a decorator factory is a function that returns a
function that return a function!

@dec(2)

def printsq(x):

 print(x*x)

thisdec = dec(2)

@thisdec

def printsq(x):

 print(x*x)

A FEW BUILT-IN DECORATORS
@functools.lru_cache(100) — Memoize up
to 100 recent calls to a function.*

@classmethod — Make a method a class method
(callable from the class itself, gets class as first
argument). E.g. for alternate constructors.
@atexit.register — Make sure this function is
called just before the program exits.

* In Python 3.9+ there is also the simpler
functools.cache decorator which stores an
unlimited number of past function calls..

MULTIPLE DECORATORS
Allowed. Each must be on its own line.

replaces f with dec1(dec2(dec3(f))).

So the decorator closest to the function name acts
first.

@dec1

@dec2

@dec3

def f(x):

 """Function body goes here"""

REFERENCES
See Lutz, Chapter 18 for more about *args and **kwargs.

See Lutz, Chapter 39 for a detailed discussion of Python decorators.

See Beazley & Jones, Chapter 9 for several examples of decorators.

ACKNOWLEDGMENT
When preparing an earlier version of this lecture, I reviewed course materials by Danko
Adrovic and Jan Verschelde (other MCS instructors).

REVISION HISTORY
2022-01-26 Last year's lecture on this topic finalized
2023-04-13 Updated for 2023

