
LECTURE 34
WEB APP WRAP-UP

MCS 275 Spring 2023
Emily Dumas



LECTURE 34: WEB APP WRAP-UP
Reminders and announcements:

Work on .

Project 4 is due 6pm CDT Friday 28 April

Custom (non-SQLite) topics: Must have requested
already, must receive approval by Friday

Autograder opens Monday 24 April.

Project 4

https://www.dumas.io/teaching/2023/spring/mcs275/nbview/projects/project4.html


TODAY
This is the last in our contiguous lecture series focused
on writing a Flask+SQLite application.

(We may revisit this topic a bit in the last week.)



WEB APP TODO LIST
☑ HTML + CSS mockups
☑ Database
☑ Flask application with worker view
☑ New work order form
☑ Activate "take assignment" button
☐ Activate other buttons
☐ Style the submission form
☐ Date/time formatting
☐ Work order status page
☐ Make all actions redirect to natural destinations
☐ DB initialization and connection cleanup
☐ Detect and handle errors (e.g. failure to take assignment)



WEB APP TODO LIST
☑ HTML + CSS mockups
☑ Database
☑ Flask application with worker view
☑ New work order form
☑ Activate "take assignment" button
☑ Activate other buttons
☑ Style the submission form
☐ Date/time formatting
☐ Work order status page
☐ Make all actions redirect to natural destinations
☐ DB initialization and connection cleanup
☐ Detect and handle errors (e.g. failure to take assignment)



WEB APP TODO LIST
☑ HTML + CSS mockups
☑ Database
☑ Flask application with worker view
☑ New work order form
☑ Activate "take assignment" button
☑ Activate other buttons
☑ Style the submission form
☑ Date/time formatting
☑ Work order status page
☑ Make all actions redirect to natural destinations
☑ DB initialization and connection cleanup
☐ Detect and handle errors (e.g. failure to take assignment)



DB CHANGES
createdb.py is now a module, not just a script.

It has functions to create or clear the tables, and to
add sample data.

It also now sets the database filename used
everywhere.

Main web app script imports it and uses it to make
sure database exists before proceeding.



DATE/TIME HANDLING
Added timefmt.py, module defining:

ts_fmt(x) - Given a timestamp x, return a string
like "12:53pm on April 28, 2023"
tsdiff_fmt(t) - Given a number of seconds t
since something happened, return a string like "38
seconds ago" or "94 days ago" etc.

Worker view uses this to display times. Entries in the
list are sorted by how long they've been in their
current state (oldest first).



WORK ORDER STATUS PAGE
Now /wo/5/ gives you a page with status info about
work order 5.

New template, new route in the main python program.

If the work order is assigned, this page links to the
worker view for the assigned worker.



AFTER WORK ORDER CREATION
We redirect from /new/submit to the status page.

But how?

We just INSERTed it so we don't know the woid.



LAST INSERTED ROW
After a single-row INSERT, how to get the primary key
of the new row?

Implicitly refers to the most-recently executed
INSERT on this connection.

SELECT last_insert_rowid();

https://www.sqlite.org/lang_corefunc.html#last_insert_rowid
https://www.sqlite.org/lang_corefunc.html#last_insert_rowid
https://www.sqlite.org/lang_corefunc.html#last_insert_rowid


LINKING TO STATUS PAGES
Any time a work order number appears on the worker
view, the number itself is a link to the associated
status page.



FORM STYLING
Larger text entry box for the description. No CSS
needed!

The size attribute of an input of type "text" sets
the width in characters.



SUMMARY: ROUTES
/worker/<name>/ - (GET) worker's view of orders
/new/ - (GET) form for new order
/new/submit/ - (POST) form submission destination
/wo/<int:woid>/ - (GET) work order status
/wo/<int:woid>/assign_to/<name>/ - (GET*) take
assignment
/wo/<int:woid>/cancel/<name>/ - (GET*) cancel
assignment
/wo/<int:woid>/complete/<name>/ - (GET*) mark
complete

* These should really be POST but we would need to use javascript
or a different button markup to do it.



NEAR MISSES
Natural things we could do, but won't:

Store work order creation username in DB
Fix would break existing DB files

Admin page
Too similar to worker view to justify discussion



DETECT ERRORS?
We perform database queries. They might fail for some
reason and raise an exception.

But we also expect some of these queries to change
exactly one row. We don't check that.



NUMBER OF UPDATED ROWS
An UPDATE might match any number of rows (e.g. 0, 1,
50). The query

returns the number of rows changed by the last
UPDATE on this connection.

SELECT changes();

https://www.sqlite.org/lang_corefunc.html#changes
https://www.sqlite.org/lang_corefunc.html#changes
https://www.sqlite.org/lang_corefunc.html#changes


HARD-CODED URLS
Right now, our templates contain explicit reference to
the URLs our application uses.

These are also declared in the Python source
(@app.route(...)).

It would be nice to have them in only one place, for
ease of change or maintenance.



FLASK'S URL BUILDER
 - convert a function name

into the URL that triggers it.
flask.url_for(function_name)

https://flask.palletsprojects.com/en/2.2.x/api/#flask.Flask.url_for


ABORT
flask.abort(http_error_code) - Immediately stop and
return a HTTP error code (usually 400 bad request, 401 not
authorized, 403 forbidden, or 404 not found).



NOT-SO-NEAR MISSES
Some of the things you'd do differently in a "real" application:

Action history: We have a single column for WO creation time. We should probably log
every action that changes a work order in a separate table.

Accounts, roles, cookies: login page checks credentials against DB, sets browser cookie.
Auth-required pages check for it, redirect to login page if not found.

JavaScript: e.g. to check for new messages in real time, post new message without
loading a new page, make buttons perform POST requests without forms.

Pagination: Limit number of orders we show on the main worker view. Links let you view
the next or previous page.

Search: Find a work order by date range, by words in description, etc.

Deploy: Domain name, server, ...



REFERENCES
 - Write and test HTML+CSS quickly in browser

REVISION HISTORY
2022-04-15 Last year's lecture on this topic finalized
2023-04-12 Updated for 2023

jsfiddle

HTML tutorial from w3schools

CSS tutorial from w3schools

The Flask tutorial

https://jsfiddle.net/
https://www.w3schools.com/html/
https://www.w3schools.com/css/
https://flask.palletsprojects.com/en/2.2.x/tutorial/



