
LECTURE 31
HTTP AND FLASK

MCS 275 Spring 2023
Emily Dumas

LECTURE 31: HTTP AND FLASK
Reminders and announcements:

Project 3 graded

Project 4 announced

Please install Flask, e.g. with

in preparation for using it in upcoming assignments.

python3 -m pip install Flask

MOCKUPS
First, let's check in on page mockups for the work
order app.

Reminder: You can always get these from the
. You can also browse history of

previous versions there.

sample
code repository

https://github.com/emilydumas/mcs275spring2023/tree/main/samplecode/html
https://github.com/emilydumas/mcs275spring2023/tree/main/samplecode/html

CSS: WHAT TO KNOW
Selectors

by tag name (e.g. div { ... })
by class (e.g. p.intro { ... })

Attributes
font-size
font-family
color
background

FILE PROTOCOL
So far, I've been opening files in the web browser, using
URLs with the file protocol.

There's no network communication here. The browser
just opens the file using the OS interface.

To make an actual web site or application, we need an
HTTP server.

PYTHON'S BUILT-IN HTTP
SERVER

Opens a web server that serves files in the current directory and its
subdirectories.

Visit http://localhost:8000/ in a browser (or substitute
other port number shown in startup message) to see index.html.

Firewall rules typically prevent incoming connections from the
internet (and maybe the local network too). That's good! Or

python3 -m http.server

python3 -m http.server --bind 127.0.0.1

INDEX.HTML
Most HTTP servers that deliver resources from a
filesystem will look for a file called index.html and
send it in response to a request that ends in a /.

(i.e. if no filename is given, index.html is used.)

FLASK
 is a Python web framework. It makes it easy to

write Python programs that respond to HTTP requests
(e.g. web applications, APIs).

Competitors include:

 — minimalist like Flask
 — huge and full-featured

Flask

Bottle
Django

https://flask.palletsprojects.com/
http://bottlepy.org/docs/dev/
https://www.djangoproject.com/

MINIMAL FLASK
from flask import Flask

app = Flask(__name__)

@app.route("/positivity/") # URL (public name for this action

def message(): # Logical name for this action

 return """<!doctype html>

 <html>

 <body>

 You can do it!

 </body>

 </html>

 """

app.run()

STATIC FILES
A flask app may not generate all the content it serves;
some things (like CSS files or images) may be prepared
in advance and used unchanged.

If you create a subdirectory static of the directory
where your Flask application runs, you can put such
"static" files there.

Refer to files there using URLs like
static/image.png.

TEMPLATES
You can make an HTML file in which some parts are to
be replaced by values of variables.

Surround the parts to be replaced by {{ and }}.

Put these in subdirectory templates and then call
flask.render_template to generate the HTML
as a return value.

Pass the variables to be given to the template as
kwargs.

@app.route("/foo")

def bar():

 # Find "templates/david.html"

 # In it, replace {{ x }} with 12 and {{ y }} with 15

 # then serve the result as the HTML for this route

 return render_template("david.html",x=12,y=15)

REFERENCES
 - Write and test HTML+CSS quickly in browser

REVISION HISTORY
2022-04-07 Last year's lecture on this topic finalized
2023-04-05 Updated for 2023

jsfiddle

HTML tutorial from w3schools

CSS tutorial from w3schools

The Flask tutorial

https://jsfiddle.net/
https://www.w3schools.com/html/
https://www.w3schools.com/css/
https://flask.palletsprojects.com/en/2.2.x/tutorial/

