
LECTURE 3
PYTHON TOUR PART II

DOCSTRINGS, FUNCTIONS, MODULES, CLASSES
MCS 275 Spring 2023

David Dumas

LECTURE 3: PYTHON TOUR II
Reminders and announcements:

Read the .

Homework 1 posted. Due Noon on Wed 18 January.

No class on Monday (MLK holiday).

See Blackboard announcement about impact of
potential faculty strike

syllabus

https://www.dumas.io/teaching/2023/spring/mcs275/nbview/policies/syllabus.html

NOTES FOR SELF STUDY
Expanded version of the code from the last two
lectures:

Python tour (prep for MCS 275)

https://www.dumas.io/teaching/2023/spring/mcs275/nbview/samplecode/python_tour.html

DOCSTRINGS
The �rst non-comment statement in any Python �le
should be a string on a line by itself. That string should
describe the �le. It is called a docstring.

Docstrings can also appear as the �rst statement inside
a function body or class de�niton.

Anywhere else you want to put explanatory text, use a
comment.

FUNCTIONS
Named*, reusable code blocks you can call (run) from
elsewhere in your code.

*It is also possible to de�ne unnamed (anonymous) functions using lambda, but that isn't

discussed in this quick overview.

See Lutz, Chapters 16-18 or MCS 260 and .

def divisble_by_7(x):
 """Return True if x is divisible by 7""" # <-- docstring!
 return x % 7 == 0

... and then later ...

if divisible_by_7(10987654321):
 print("Hey, did you know 10987654321 is a multiple of 7?!")

Lec 9 Lec 24

https://www.dumas.io/teaching/2021/fall/mcs260/slides/lecture9.html
https://www.dumas.io/teaching/2021/fall/mcs260/slides/lecture24.html

MODULES
A module keeps a bunch of related code in one place;
good for reuse and organization. The statement

will look for modulename.py in current directory, or a

built-in module with that name, and make its functions,
classes, etc. available.

Use modulename.funcname(...) to call a function

in a module.

See Lutz, Chapters 22-23 or MCS 260 .

import modulename

Lec 20

https://www.dumas.io/teaching/2021/fall/mcs260/slides/lecture23.html

CLASSES
Classes let you de�ne custom types in Python with
attributes (data) and methods (behavior).

See Lutz, Chapters 27-28 and MCS 260 Lectures , , , .

class Point:
 """A point in the xy-plane""" # <--- Remember docstring!
 def __init__(self,x,y):
 """Initialize new point instance"""
 self.x = x # make a new attribute (self.x)
 self.y = y # make a new attribute (self.y)
 def translate(self,dx,dy):
 """Move the point by a vector (dx,dy)"""
 self.x += dx
 self.y += dy

P = Point(1,2) # calls __init__(...)
P.translate(5,0)
print("After moving, P.x is",P.x) # will print 6

25 26 27 28

https://www.dumas.io/teaching/2021/fall/mcs260/slides/lecture25.html
https://www.dumas.io/teaching/2021/fall/mcs260/slides/lecture26.html
https://www.dumas.io/teaching/2021/fall/mcs260/slides/lecture27.html
https://www.dumas.io/teaching/2021/fall/mcs260/slides/lecture28.html

REFERENCES
The is an expanded version of the live coding examples from today's lecture.

Individual slides refer to chapters from Lutz (Learning Python 5ed).

Free access to online book for UIC students; see course web page.

The has slide presentations, sample code, and other
resources for review.

REVISION HISTORY
2023-01-13 Initial publication
2023-01-16 Fixed some links

Python tour

MCS 260 Fall 2021 home page

https://www.dumas.io/teaching/2023/spring/mcs275/nbview/samplecode/python_tour.html
https://www.dumas.io/teaching/2021/fall/mcs260/

