
LECTURE 28
SQLITE

MCS 275 Spring 2023
Emily Dumas

POPULAR SQL DATABASES
MySQL (open source)
PostgreSQL (open source)
Oracle
Microsoft SQL Server
IBM DB2
SQLite

USING SQLITE
Method 1: From a Python script

Method 2: Run sqlite command line shell and type

import sqlite3

con = sqlite3.connect("mydbfile.name") # often .db or .sqlite

res = con.execute("SELECT * FROM evil_plans WHERE year=2023;")

print(res.fetchall()) # or iterate over res in a for loop

con.close()

.open "mydbfile.name" -- Alternative to command line arg

SELECT * FROM evil_plans WHERE year=2023;

Today, we'll mostly practice making queries and
learning more of SQL.

SAMPLE DATABASES
 — Planets orbiting the sun.

 — Information about
approximately 35,000 power plants around the world
(derived from the).

solarsystem.sqlite

powerplants.sqlite

Global Power Plant Database

https://github.com/emilydumas/mcs275spring2023/blob/main/samplecode/sql/solarsystem.sqlite?raw=true
https://github.com/emilydumas/mcs275spring2023/blob/main/samplecode/sql/powerplants.sqlite?raw=true
https://datasets.wri.org/dataset/globalpowerplantdatabase

SQLITE COMMAND LINE SHELL
Useful commands specific to the shell:

.open FILENAME - Use a certain DB

.tables - List tables in this DB

.schema TABLENAME - Show table columns

.quit - Exit sqlite3

.headers on - Put column headings in output

.mode columns - Pretty output

.mode box - Even prettier output

POWERPLANTS TABLE
id - An integer uniquely identifying the row
gppd_id - Alphanumeric code identifying this plant in the GPPD
country - Name of country in which plant is located
name - Name of the power plant
capacity_mw - Generation capacity in megawatts (MW)
latitude, longitude - Location
primary_fuel - Name of primary fuel or generation type (e.g.
Nuclear, Solar, Oil)
secondary_fuel - If plant has multiple generation methods
year_commissioned - Year the plant was commissioned
owner - Name of organization that owns the plant, if known
output_gwh_XXXX - Gigawatt-hours (GWH) of output in the year
XXXX, available for 2013-2019. (1MW × 1 year = 8.77 GWH.)

SELECT
Find and return rows. The most common query.

Conditions can be e.g. equalities and inequalities.

WHERE, ORDER BY, LIMIT can be used together, but
must appear in that "WOBL" order. ()

SELECT * FROM table_name; -- give me everything

SELECT * FROM table_name WHERE condition; -- some rows

SELECT col3, col1 FROM table_name; -- some columns

SELECT * FROM table_name LIMIT 10; -- at most 10 rows

SELECT * FROM table_name

ORDER BY col2; -- sort by col2, smallest first

SELECT * FROM table_name

ORDER BY col2 DESC; -- sort by col2, biggest first

Details.

https://sqlite.org/lang_select.html

SQL CONDITIONS
Examples of things that can appear after WHERE:

col = value -- Also supports >, >=, <, <=, !=

col IN (val1, val2, val3)

col BETWEEN lowval AND highval

col IS NULL

col IS NOT NULL

stringcol LIKE pattern -- string pattern matching

condition1 AND condition2

condition1 OR condition2

LIKE

In a pattern string:

% matches any number of characters (including 0)
_ matches any single character

e.g. "%d_g" matches "fossil dig" and "dog"
but does not match "hypersonic drag", "dog
toy", or "dg".

coursetitle LIKE "Introduction to %"

itemtype LIKE "electrical adapt_r"

GETTING DATA FROM SQLITE
After SELECT, where are the data?

execute() doesn't return the rows directly. It
returns a Cursor object which is ready to give them to
you.

To request rows from a Cursor c, several options:

Use it as an iterable (it yields one tuple per row).
c.fetchone() returns next row as a tuple.
c.fetchall() returns a list of tuples.

CREATE TABLE
Creates a table. The set of tables doesn't change very
often in most databases, and this setup step is often
performed manually or by a separate program.

Types include: TEXT, REAL, INTEGER

Modifiers include: UNIQUE, NOT NULL, PRIMARY
KEY, and DEFAULT [val]

CREATE TABLE [IF NOT EXISTS] table_name (

 col1 TYPE1 [MODIFIERS],

 col2 TYPE2 [MODIFIERS], ...

); -- or you could write it all on one line!

REMINDER
Creating a table twice generates an error unless IF
NOT EXISTS is given.

PRIMARY KEY
A unique identifier for each row. Recommended to use
INTEGER PRIMARY KEY as type.

Useful to uniquely refer to a row in an UPDATE or
DELETE query.

If you don't include one, then SQLite makes one and
keeps it hidden.

INSERT INTO ... VALUES
Add one row to an existing table.

Missing columns are set to default values (often null).

Exceptions indicate constraint violations (e.g. typing).

There is also a way to insert many rows at once, taken
from the result of another query.

-- Set every column (need to know column order!)

INSERT INTO table_name

VALUES (val1, val2, val3, val4, val5, val6, val7);

-- Set some columns, in an order I specify

INSERT INTO table_name (col1, col7, col3)

VALUES (val1, val7, val3);

GIVING DATA TO SQLITE
Don't use string formatting to embed data in a call to
execute(). Instead, use ? characters as
placeholders and then give a tuple of values in the
second argument.

do this instead; it keeps data in native types

separate from the SQL code

con.execute(

 "INSERT INTO planets VALUES (?,?,?);",

 ("Earth", 1.0, None)

)

UPDATE
Change values in a row (or rows).

Warning: Every row meeting the condition is changed!

Also supports ORDER BY and LIMIT.

Use ? placeholders for values when executing from
Python.

UPDATE table_name SET col1=val1, col5=val5 WHERE condition;

DELETE
Remove rows matching a condition.

Also supports ORDER BY and LIMIT (e.g. to remove n
rows with largest values in a given column).

Immediate, irreversible.

Omit WHERE clause to delete all rows.

DELETE FROM table_name WHERE condition;

DROP TABLE
Deletes an entire table.

Immediate, irreversible. Think of it as "throw the only
copy of this table into a pool of lava". Use caution.

DROP TABLE table_name; -- no such table = ERROR

DROP TABLE IF EXISTS table_name; -- no such table = ok

TRANSACTION CONTEXT
MANAGER

You can use a sqlite3 Connection object as a context
manager (i.e. in with) to create a transaction.

Another connection to the same database will never
see it in a state other than "everything in the

with con:

 # Make all the changes necessary to reflect the closing

 # of the Scranton office.

 con.execute("UPDATE...")

 con.execute("UPDATE...")

REFERENCES

 has a nice tutorial where you can run SQL command directly in your
browser. Their SQLite install instructions are detailed and easy to follow, too.

 by Deitel and Deitel, Section 17.2.
(This is an O'Reilly book, free for anyone with a UIC email; see course page for login
details.)

 by Thomas Nield is a nice introduction to SQL that focuses on
SQLite. It's another O'Reilly book you can access with your UIC email.

Computer Science: An Overview by Brookshear and Brylow, Chapter 9.

REVISION HISTORY
2022-04-15 Last year's lecture on this topic finalized
2023-03-28 Updated for 2023

SQLite home page

sqlitetutorial.net

Intro to Python for Computer Science and Data Science

Getting Started with SQL

https://www.sqlite.com/index.html
https://www.sqlitetutorial.net/
https://learning.oreilly.com/library/view/intro-to-python/9780135404799/
https://learning.oreilly.com/library/view/getting-started-with/9781491938607/

