
LECTURE 19
SET AND DEFAULTDICT

MCS 275 Spring 2023
Emily Dumas

LECTURE 19: SET AND DEFAULTDICT
Reminders and announcements:

Project 1 graded. Check the feedback!

Project 2 grading underway.

Project 3 (due March 17) coming soon.

Homework 7 due tomorrow, now accepting
submissions.

PLAN
Wrap up trees unit

Start language features unit

INTEGERSET VARIANTS
IntegerSet - uses BST

IntegerSetUL - uses unsorted list

IntegerSetSL - uses sorted list

INTEGERSET TIMING
integerset.py has been updated with a script to

test addition and membership test times for 20,000
integers.

TRAVERSALS
Last time we introduced the preorder, postorder, and
inorder traversals of a binary tree.

The trees module now has methods for each of these.

UNIQUELY DESCRIBING A TREE
Many different binary trees can have the same inorder
traversal.

Many different binary trees can have the same
preorder traversal.

And yet:

Theorem: A binary tree T is uniquely determined by its

inorder and preorder traversals.

LAST WORDS ON BINARY TREES
BSTs make a lot of data accessible in a few "hops"
from the root.
They are a good choice for mutable data structures
involving search operations.
Deletion of a node is an important feature we didn't
implement. (Take MCS 360!)

Unbalanced trees are less ef�cient.

MCS 360 usually covers rebalancing operations.

Unbalanced trees are less ef�cient.

MCS 360 usually covers rebalancing operations.

SET
Python's built-in type set represents an unordered

collection of distinct objects.

You can put an object in a set if (and only if) it's allowed

as a key of a dict. For built-in types that usually just

means immutable.

Allowed: bool, int, float, str, tuple

Not allowed: list, set

SET USAGE
S = { 4, 8, 15, 16, 23, 42 } # Set literal

S = set() # New empty set

S.add(5) # S is {5}

S.add(10) # S is {5,10}

8 in S # False

5 in S # True

S.discard(1) # Does nothing

S.remove(1) # Raises KeyError

S.remove(5) # Now S is {10}

S.pop() # Remove and return one element (unclear which!)

for x in S: # sets are iterable (but no control over order)

 print(x)

SET OPERATIONS
Binary operations returning new sets:

S | S2 # Evaluates to union of sets

S & S2 # Evaluates to intersection of sets

S.union(iterable) # Like | but allows any iterable

S.intersection(iterable) # Like & but allows any iterable

SET MUTATIONS
Operations that modify a set S based on contents of

another collection.
adds elements of iterable to S

S.update(iterable)

remove anything from S that is NOT in the iterable

S.intersection_update(iterable)

remove anything from S that is in the iterable

S.difference_update(iterable)

MORE ABOUT SET
set has lots of other features that are described in the

.documentation

https://docs.python.org/3/library/stdtypes.html#set

Python's set is basically a dictionary without values.

For large collections, it is much faster than using a list.

Appropriate whenever order is not important, and
items cannot appear multiple times.

HISTOGRAM
You want to know how many times each character
appears in a string.

This won't work. Why?

hist = dict()

for c in s:

 hist[c] += 1

DEFAULTDICT
Built-in module collections contains a class

defaultdict that works like a dictionary, but if a key

is requested that doesn't exist, it creates it and assigns a
default value.

This works!

import collections

hist = collections.defaultdict(int)

for c in s:

 hist[c] += 1

The defaultdict constructor takes one argument, a

function default_factory.

default_factory is called to make default values

for keys when needed.

Common examples with built-in factories:
defaultdict(list) # default value [] as returned by list()

defaultdict(int) # default value 0, as returned by int()

defaultdict(float) # default value 0.0, as returned by float()

defaultdict(str) # default value "", as returned by str()

REFERENCES
In optional course texts:

,
discusses binary trees in .

Lutz discusses sets in Chapter 5, in the subsection "Other Numeric Types" (even
though there is nothing "numeric" about sets).

Elsewhere:
 discusses graph theory and trees in Appendices

B.4 and B.5, and binary search trees in Chapter 12.

REVISION HISTORY
2022-03-02 Last year's lecture on this topic �nalized
2022-02-26 Updated for 2023

Problem Solving with Algorithms and Data Structures using Python by Miller and Ranum
Chapter 7

Cormen, Leiserson, Rivest, and Stein

https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/Trees/toctree.html
https://mitpress.mit.edu/books/introduction-algorithms-third-edition

