
LECTURE 18
BST AND TREE TRAVERSALS

MCS 275 Spring 2023
David Dumas



LECTURE 18: BST AND TREE TRAVERSALS
Reminders and announcements:

Project 2 due today.

Homework 7 available.

Project 1 will be graded by Monday.

It's only the manual review you're waiting on; the
autograder results account for most of the project
grade.



UPDATED BST CLASS
I put an implementation of binary search tree (as class
BST) in trees.py.

Also modified so BST() is considered a valid, empty
tree. (That is, None as a key is treated specially.)

BST.search also supports a verbose mode.



TREEUTIL
I added a module to the datastructures directory
of the sample code repository which can generate
random trees. You'll use it in lab this week.

Documentation of treeutil module

https://github.com/daviddumas/mcs275spring2023/blob/main/samplecode/datastructures/treeutil.md


INTEGERSET
As a sample application of BST, we can make a class
that stores a set of integers, supporting membership
testing and adding new elements.
Compare alternatives:

Unsorted list - fast to insert, but slow membership test

Sorted list - fast membership test, slow insert



IMPLEMENTATION HIDING
To use BST, you need to know about and work with
Node objects.

In contrast, IntegerSet has an interface based
directly on the values to be stored. It hides the fact
that its implementation uses a BST.



WALKING A TREE
Back to discussing binary trees (not necessarily BST).

For some purposes we need to visit every node in a
tree and perform some action on them.

To do this is to traverse or walk the tree.



NAMED TRAVERSALS
The three most-o�en used recursive traversals:

preorder - Node, le� subtree, then right subtree.

postorder - Le� subtree, right subtree, then node.

inorder - Le� subtree, node, then right subtree.

Note: They all visit le� child before right child.



PREORDER TRAVERSAL

node, le�, right



PREORDER TRAVERSAL

node, le�, right



PREORDER TRAVERSAL

node, le�, right



PREORDER TRAVERSAL

node, le�, right



PREORDER TRAVERSAL

node, le�, right



PREORDER TRAVERSAL

node, le�, right



PREORDER TRAVERSAL

node, le�, right



PREORDER TRAVERSAL

node, le�, right



PREORDER TRAVERSAL

node, le�, right



PREORDER TRAVERSAL
Typical use: Make a copy of the tree.

Insert the keys into an empty BST in this order to
recreate the original tree.





















POSTORDER TRAVERSAL

le�, right, node



POSTORDER TRAVERSAL

le�, right, node



POSTORDER TRAVERSAL

le�, right, node



POSTORDER TRAVERSAL

le�, right, node



POSTORDER TRAVERSAL

le�, right, node



POSTORDER TRAVERSAL

le�, right, node



POSTORDER TRAVERSAL

le�, right, node



POSTORDER TRAVERSAL

le�, right, node



POSTORDER TRAVERSAL

le�, right, node



POSTORDER TRAVERSAL
Typical use: Delete the tree.

If you delete keys in postorder, then you will only ever
be removing nodes without children.





















INORDER TRAVERSAL

le�, node, right



INORDER TRAVERSAL

le�, node, right



INORDER TRAVERSAL

le�, node, right



INORDER TRAVERSAL

le�, node, right



INORDER TRAVERSAL

le�, node, right



INORDER TRAVERSAL

le�, node, right



INORDER TRAVERSAL

le�, node, right



INORDER TRAVERSAL

le�, node, right



INORDER TRAVERSAL

le�, node, right



INORDER TRAVERSAL
Typical use: Turn a BST into a sorted list of keys.



UNIQUELY DESCRIBING A TREE
Many different binary trees can have the same inorder
traversal.

Many different binary trees can have the same
preorder traversal.

And yet:

Theorem: A binary tree T is uniquely determined by its
inorder and preorder traversals.



LAST WORDS ON BINARY TREES
BSTs make a lot of data accessible in a few "hops"
from the root.
They are a good choice for mutable data structures
involving search operations.
Deletion of a node is an important feature we didn't
implement. (Take MCS 360!)



Unbalanced trees are less efficient.

MCS 360 usually covers rebalancing operations.



Unbalanced trees are less efficient.

MCS 360 usually covers rebalancing operations.



REFERENCES
In optional course texts:

, discusses binary trees in .

Elsewhere:
 discusses graph theory and trees in Appendices

B.4 and B.5, and binary search trees in Chapter 12.

REVISION HISTORY
2022-02-28 Last year's lecture on this topic finalized
2023-02-23 Updated for 2023

Problem Solving with Algorithms and Data Structures using Python by Miller and
Ranum Chapter 7

Cormen, Leiserson, Rivest, and Stein

https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/Trees/toctree.html
https://mitpress.mit.edu/books/introduction-algorithms-third-edition



