
LECTURE 15
COMPARISON SORTS

MCS 275 Spring 2023
Emily Dumas

LECTURE 15: COMPARISON SORTS
Reminders and announcements:

Homework 6 posted.

Project 2 due 6pm Fri Feb 24. Autograder opens by
Monday.

Starting new topic (trees) next week.

EVALUATING SORTS
On Monday we discussed and implemented mergesort,
developed by von Neumann (1945) and Goldstine
(1947).

On Wednesday we discussed quicksort, first described
by Hoare (1959), with the simpler partitioning scheme
introduced by Lomuto.

But are these actually good ways to sort a list?

MERGESORT RECURSION TREE

MERGESORT RECURSION TREE

MERGESORT RECURSION TREE

MERGESORT RECURSION TREE

MERGESORT RECURSION TREE

MERGESORT RECURSION TREE

MERGESORT RECURSION TREE

MERGESORT RECURSION TREE

MERGESORT RECURSION TREE

MERGESORT RECURSION TREE

EFFICIENCY
Theorem: If you measure the time cost of mergesort in
any of these terms

Number of comparisons made
Number of assignments (e.g. L[i] = x counts as 1)

Number of Python statements executed

then the cost to sort a list of length is less than
, for some constant that only depends on

which expense measure you chose.

n

Cn log(n) C

ASYMPTOTICALLY OPTIMAL
 is pretty efficient for an operation that

needs to look at all elements. It's not linear in , but it
only grows a little faster than linear functions.

Furthermore, is the best possible time for
comparison sort of elements (though different
methods might have better).

Cn log(n)
n n

Cn log(n)
n

C

LOOKING BACK ON QUICKSORT
It ought to be called partitionsort because the
algorithm is simply:

Partition the list
Quicksort the part before the pivot
Quicksort the part after the pivot

OTHER PARTITION STRATEGIES
We used the last element of the list as a pivot. Other
popular choices:

The first element, L[start]

A random element of L[start:end]

The element L[(start+end)//2]

An element near the median of L[start:end]

(more complicated to find!)

HOW TO CHOOSE?
Knowing something about your starting data may guide
choice of partition strategy (or even the choice to use
something other than quicksort).

Almost-sorted data is a common special case where
first or last pivots are bad.

EFFICIENCY
Theorem: If you measure the time cost of quicksort in
any of these terms

Number of comparisons made
Number of swaps or assignments
Number of Python statements executed

then the cost to sort a list of length is less than ,
for some constant .

But if you average over all possible orders of the input
data, the result is less than .

n Cn2

C

Cn log(n)

QUICKSORT RECURSION TREE

QUICKSORT RECURSION TREE

QUICKSORT RECURSION TREE

QUICKSORT RECURSION TREE

QUICKSORT RECURSION TREE

QUICKSORT RECURSION TREE

BAD CASE
What if we ask our version of quicksort to sort a list

that is already sorted?

Recursion depth is (whereas if the pivot is always the
median it would be).

Number of comparisons . Very slow!

n

≈ nlog2

≈ Cn2

STABILITY
A sort is called stable if items that compare as equal
stay in the same relative order after sorting.

This could be important if the items are more complex
objects we want to sort by one attribute (e.g. sort
alphabetized employee records by hiring year).

As we implemented them:

Mergesort is stable
Quicksort is not stable

EFFICIENCY SUMMARY
Algorithm Time (worst) Time (average) Stable? Space

Mergesort Yes

Quicksort No

(Every time is used, it represents a different constant.)

Cn log(n) Cn log(n) Cn

Cn
2

Cn log(n) C

C

OTHER COMPARISON SORTS
Insertion sort — Convert the beginning of the list to a
sorted list, starting with one element and growing by
one element at a time.

Bubble sort — Process the list from left to right. Any
time two adjacent elements are in the wrong order,
switch them. Repeat times.n

EFFICIENCY SUMMARY
Algorithm Time (worst) Time (average) Stable? Space

Mergesort Yes

Quicksort No

Insertion Yes

Bubble Yes

(Every time is used, it represents a different constant.)

Cn log(n) Cn log(n) Cn

Cn2 Cn log(n) C

Cn2 Cn2 C

Cn
2

Cn
2

C

C

CLOSING THOUGHTS ON SORTING
Mergesort is rarely a bad choice. It is stable and sorts in

 time. Nearly sorted input is not a
pathological case. Its main weakness is its use of
memory proportional to the input size.

, which we may discuss later, has
running time and uses constant space, but it is not
stable.

Cn log(n)

Heapsort Cn log(n)

https://en.wikipedia.org/wiki/Heapsort

There are stable comparison sorts with
running time and constant space (best in every
category!) though they tend to be more complex.

If swaps and comparisons have very different cost, it
may be important to select an algorithm that minimizes
one of them. Python's list.sort assumes that

comparisons are expensive, and uses .

Cn log(n)

Timsort

https://en.wikipedia.org/wiki/Timsort

QUADRATIC DANGER
Algorithms that take time proportional to are a big
source of real-world trouble. They are often fast
enough in small-scale tests to not be noticed as a
problem, yet are slow enough for large inputs to disable
the fastest computers.

n2

REFERENCES
An algorithms textbook like will discuss analysis of running
time for sorting algorithms in more depth.

REVISION HISTORY
2022-02-21 Last year's lecture on this topic finalized
2023-02-17 Updated for 2023

Algorithms by Jeff Erickson

https://jeffe.cs.illinois.edu/teaching/algorithms/

