
LECTURE 14
QUICKSORT

MCS 275 Spring 2023
Emily Dumas

LECTURE 14: QUICKSORT
Reminders and announcements:

Project 2 due 6pm Fri 24 Feb.

Project 2 autograder opens by Mon 20 Feb.
Having at least partial work ready to submit at
that time is a good goal.

TRANSFORMATION VS MUTATION
Last time we wrote a mergesort function that acts as a
transformation: A list is given as input, a new sorted
list is returned.

Another approach we could consider is sorting as a
mutation: A list is provided, the function reorders its
items and returns nothing.

IN PLACE
A sorting transformation always uses an amount of
extra memory proportional to the size of the list. (It
needs a second list to store the output.)

A sort that operates as a mutation has the possibility
of using only a fixed amount of memory to do its work.

Doing so is called an in place sorting method.

QUICKSORT
A recursive in place sorting method that, like
mergesort, is reasonably efficient and widely used.

PARTITION
Let's first study something weaker than sorting.

Given a list L, let p be the last element of L.

We want to rearrange L so that it looks like:

[items < p, p, items ≥ p]

We say L has been partitioned at p, and we call p the
pivot.

PARTITION ALGORITHM IDEA
Scan through the list, moving things smaller than the
pivot to the beginning.

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

PARTITION ALGORITHM
VISUALIZATION

AFTER PARTITION
The two chunks of the list on either side of the pivot
may not be sorted.

But we could bring each of them closer to being sorted
by partitioning them...

QUICKSORT SUMMARY
Starting with an unsorted list:

If the list has 0 or 1 elements, return immediately.
Otherwise, partition the list.
Quicksort the part of the list before the pivot.
Quicksort the part of the list after the pivot.

It's divide and conquer, but with no merge step. The
hard work is instead in partitioning.

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

CODING TIME
Let's implement quicksort in Python.

Algorithm quicksort:
Input: list L and indices start and end.

Goal: reorder elements of L so that L[start:end] is sorted.

1. If (end-start) is less than or equal to 1, return immediately.

2. Otherwise, call partition(L) to partition the list, letting m be
the final location of the pivot.

3. Call quicksort(L,start,m) and
quicksort(L,m+1,end) to sort the parts of the list on either
side of the pivot.

Algorithm partition:
Input: list L and indices start and end.

Goal: Take L[end-1] as a pivot, and reorder elements of L to
partition L[start:end] accordingly.

WHY DISCUSS ALGORITHMS?
Python lists have built-in .sort() method. Why talk
about sorting?

1. Study cases of easy-to-explain problems solved in
clever ways.

2. See patterns of thinking that work in other settings.

EVALUATING SORTS
Last time we discussed and implemented mergesort,
developed by von Neumann (1945) and Goldstine
(1947).

Today we discussed quicksort, first described by Hoare
(1959) and the simpler partitioning scheme introduced
by Lomuto.

But are these actually good ways to sort a list?

EFFICIENCY
Theorem: If you measure the time cost of mergesort in
any of these terms

Number of comparisons made
Number of assignments (e.g. L[i] = x counts as
1)
Number of Python statements executed

then the cost to sort a list of length is less than
, for some constant that only depends on

which expense measure you chose.

n

Cn log(n) C

ASYMPTOTICALLY OPTIMAL
 is pretty efficient for an operation that

needs to look at all elements. It's not linear in , but
it only grows a little faster than linear functions.

Furthermore, is the best possible time for
comparison sort of elements (though different
methods might have better).

Cn log(n)
n n

Cn log(n)
n

C

QUICKSORT
Is quicksort similarly efficient?

REFERENCES
Recursion references from .
Sorting visualizations:

 by Linus Lee
 by Alex Macy

Slanted line animated visualizations of and by Mike Bostock

REVISION HISTORY
2022-02-18 Last year's lecture on this topic finalized
2023-02-15 Updated for 2023

Lecture 10

2D visualization through color sorting
Animated bar graph visualization of many sorting algorithms

mergesort quicksort

https://www.dumas.io/teaching/2023/spring/mcs275/slides/lecture10.html#/17
https://dotink.co/posts/visualizing-sorting-algorithms/
https://blocks.roadtolarissa.com/alexmacy/770f14e11594623320db1270361331dc
https://blocks.roadtolarissa.com/mbostock/1243323
https://blocks.roadtolarissa.com/mbostock/e1e1e7e2c360bec054ba

