
LECTURE 13
MERGESORT

MCS 275 Spring 2023
David Dumas

LECTURE 13: MERGESORT
Reminders and announcements:

Project 2 posted; due 6pm central Fri Feb 24.

Project 1 grading underway.

Homework 5 due tomorrow (notebook).

PROJECT 2
Demo and discussion to supplement the

.
project

description

https://www.dumas.io/teaching/2023/spring/mcs275/nbview/projects/project2.html

PLAN
Discuss the theory of

Divide and conquer
Sorting
Mergesort

Implement mergesort

DIVIDE AND CONQUER
A strategy that often involves recursion.

Split a problem into parts.
Solve for each part.
Merge the partial solutions into a solution of the
original problem.

Not always possible or a good idea. It only works if
merging partial solutions is easier than solving the
entire problem.

COMPARISON SORT
Suppose you have a list of objects that can be compared
with ==, >, <.

You'd like to reorder them in increasing order.

This problem is called comparison sort. There are many
solutions.

MERGESORT
A divide-and-conquer solution to comparison sort.

It is a fast solution, often used in practice.

Key: It is pretty easy to take two sorted lists and merge
them into a single sorted list.

So, let's divide our list into halves, sort each one
(recursively), then merge them.

Now we'll formalize this.

Algorithm mergesort:

Input: list L whose elements support comparison.

Goal: return a list that contains the items from L but in sorted order.

1. If L has 0 or 1 elements, return L

2. Otherwise, divide L into rougly equal pieces L0 and L1.

3. Recursively call mergesort on L0 and L1.

4. Use merge to merge these sorted lists and return the result.

MERGESORT EXAMPLE

MERGESORT EXAMPLE

MERGESORT EXAMPLE

MERGESORT EXAMPLE

MERGESORT EXAMPLE

MERGESORT EXAMPLE

MERGESORT EXAMPLE

MERGESORT EXAMPLE

MERGESORT EXAMPLE

MERGESORT EXAMPLE

MERGESORT EXAMPLE

MERGESORT EXAMPLE

MERGESORT EXAMPLE

MERGESORT EXAMPLE

MERGESORT EXAMPLE

BUT HOW TO MERGE?
This algorithm depends on having a function merge
that can merge two sorted lists into a single sorted list.

Algorithm merge:

Input: sorted lists L0 and L1.

Goal: return a sorted list with same items as L0+L1

1. Make a new empty list L

2. Make integer variables i0,i1 to keep track of current position in

L0,L1 respectively. Set to zero.

3. While i0 < len(L0) and i1 < len(L1), do the following:

Check which of L0[i0] and L1[i1] is smaller.

Append the smaller one to L.

Increment whichever one of i0,i1 was used.

4. Append any remaining portion of L0 to L.

5. Append any remaining portion of L1 to L.

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

MERGING SORTED LISTS

CODING TIME
Let's implement mergesort in Python.

REFERENCES
Recursion references from .
Making nice visualizations of sorting algorithms is a cottage industry in CS education.
Some you might like to check out:

 by Linus Lee
 by Alex Macy

Slanted line animated visualizations of and by Mike Bostock

REVISION HISTORY

2022-02-16 Last year's version of this lecture finalized
2023-02-13 Updated for 2023

Lecture 10

2D visualization through color sorting
Animated bar graph visualization of many sorting algorithms

mergesort quicksort

https://www.dumas.io/teaching/2023/spring/mcs275/slides/lecture10.html#/17
https://dotink.co/posts/visualizing-sorting-algorithms/
https://blocks.roadtolarissa.com/alexmacy/770f14e11594623320db1270361331dc
https://blocks.roadtolarissa.com/mbostock/1243323
https://blocks.roadtolarissa.com/mbostock/e1e1e7e2c360bec054ba

