
LECTURE 12
RECURSION WITH BACKTRACKING

MCS 275 Spring 2023
David Dumas



LECTURE 12: RECURSION WITH BACKTRACKING
Reminders and announcements:

Project 1 due 6pm today.

Project 2 description will be posted by Monday.

Project 2 due 6pm on Fri Feb 24.



PLAN
Recall backtracking algorithm to solve a maze
Implement the maze solver
Experiment with it



Algorithm depth_first_maze_solution:

Input: a maze and a path under consideration (partial progress toward solution).

1. If the path is a solution, just return it.

2. Otherwise, enumerate possible next steps that don't go backwards.

3. For each of the possible next steps:
Make a new path by adding this next step to the current one.

Make a recursive call to attempt to complete this path to a solution.

If recursive call returns a solution, we're done. Return it immediately.

(If recursive call returns None, continue the loop.)

4. If we get to this point, every continuation of the path is a dead end. Return None.



LET'S WRITE THIS IN PYTHON



depth_first_maze_solution(M,path=None):

Arguments:

M - a Maze object to be solved (read only)

path - a list of Point2 objects

Returns: Either

List of Point2 objects (solution extending path), or

None (if no solution exists that extends path)



MAZE COORDINATES



MAZE COORDINATES



IMAGE SUPPORT
Class Maze can save an instance as SVG

(.save_svg(fn)) or PNG (.save_png(fn)).

The latter requires a module called Pillow we'll discuss
later. Can install with:

python3 -m pip install pillow



REFERENCES
Same suggested references as .

REVISION HISTORY
2022-02-14 Last year's lecture on this topic finalized
2023-02-10 Updated for 2023

Lecture 10

https://www.dumas.io/teaching/2023/spring/mcs275/slides/lecture10.html#/17



