LECTURE 12

RECURSION WITH BACKTRACKING

MCS 275 Spring 2023 Emily Dumas

LECTURE 12: RECURSION WITH BACKTRACKING

Reminders and announcements:

- Project 1 due 6pm today.
- Project 2 description will be posted by Monday.
- Project 2 due 6pm on Fri Feb 24.

PLAN

- Recall backtracking algorithm to solve a maze
- Implement the maze solver
- Experiment with it

Algorithm depth_first_maze_solution:

Input: a maze and a path under consideration (partial progress toward solution).

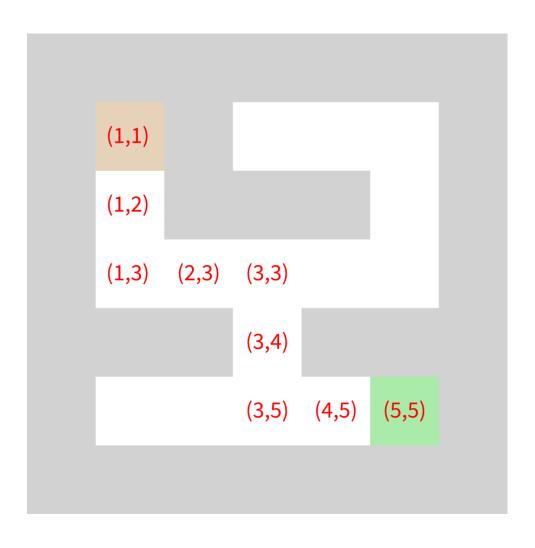
- 1. If the path is a solution, just return it.
- 2. Otherwise, enumerate possible next steps that don't go backwards.
- 3. For each of the possible next steps:
 - Make a new path by adding this next step to the current one.
 - Make a recursive call to attempt to complete this path to a solution.
 - If recursive call returns a solution, we're **done**. Return it immediately.
 - (If recursive call returns None, continue the loop.)
- 4. If we get to this point, every continuation of the path is a dead end. Return None.

LET'S WRITE THIS IN PYTHON

depth_first_maze_solution(M,path=None):

Arguments:

- M a Maze object to be solved (read only)
- path a list of Point2 objects


Returns: Either

- List of Point2 objects (solution extending path),
 or
- None (if no solution exists that extends path)

MAZE COORDINATES

(0,0)	(1,0)	(2,0)	(3,0)	(4,0)	(5,0)	(6,0)
(0,1)	(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	(6,1)
(0,2)	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	(6,2)
(0,3)	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)
(0,4)	(1,4)	(2,4)	(3,4)	(4,4)	(5,4)	(6,4)
(0,5)	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)
(0,6)	(1,6)	(2,6)	(3,6)	(4,6)	(5,6)	(6,6)

MAZE COORDINATES

IMAGE SUPPORT

Class Maze can save an instance as SVG (.save_svg(fn)) or PNG (.save_png(fn)).

The latter requires a module called Pillow we'll discuss later. Can install with:

python3 -m pip install pillow

REFERENCES

Same suggested references as Lecture 10.

REVISION HISTORY

- 2022-02-14 Last year's lecture on this topic finalized
- 2023-02-10 Updated for 2023