
LECTURE 11
RECURSION VS ITERATION II

MCS 275 Spring 2023
Emily Dumas

LECTURE 11: RECURSION VS ITERATION II
Reminders and announcements:

Project 1 due Friday at 6pm

Project 2 description coming by Monday

Remember to check the .recursion sample code

https://github.com/emilydumas/mcs275spring2023/tree/main/samplecode/recursion

FIBONACCI TIMING SUMMARY
n=35 n=450

recursive 1.9s > age of universe

memoized recursive <0.001s 0.003s

iterative <0.001s 0.001s

Measured on my old of�ce computer (2015 Intel i7-6700K) with Python 3.8.5

CALL COUNTS
Another way to measure the cost of a recursive function
is to count how many times the function is called.

Let's do this for recursive fib.

0 1 2 3 4 5 6

calls

n

CALL COUNTS
Another way to measure the cost of a recursive function
is to count how many times the function is called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1

CALL COUNTS
Another way to measure the cost of a recursive function
is to count how many times the function is called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1

CALL COUNTS
Another way to measure the cost of a recursive function
is to count how many times the function is called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3

CALL COUNTS
Another way to measure the cost of a recursive function
is to count how many times the function is called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5

CALL COUNTS
Another way to measure the cost of a recursive function
is to count how many times the function is called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5 9

CALL COUNTS
Another way to measure the cost of a recursive function
is to count how many times the function is called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5 9 15

CALL COUNTS
Another way to measure the cost of a recursive function
is to count how many times the function is called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5 9 15 25

CALL COUNTS
Another way to measure the cost of a recursive function
is to count how many times the function is called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5 9 15 25

Fn 0 1 1 2 3 5 8 13

Theorem: Let denote the total number of times
fib is called to compute fib(n). Then

and

T (n)

T (0) = T (1) = 1

T (n) = T (n − 1) + T (n − 2) + 1.

Corollary: .

Proof of corollary: Both sequences and
 have the same �rst two terms, and obey the

same recursion relation. Induction.

T (n) = 2 − 1Fn+1

T (n)
2 − 1Fn+1

Corollary: .

Proof of corollary: Let . Then
, and

Therefore and have the same �rst two terms, and
follow the same recursive de�nition based on the two
previous terms. By induction, the set of such that

 is all of .

T (n) = 2 − 1Fn+1

S(n) = 2 − 1Fn+1

S(0) = S(1) = 1

S(n) = 2 − 1 = 2(+) − 1Fn+1 Fn Fn−1

= (2 − 1) + (2 − 1) + 1Fn Fn−1

= S(n − 1) + S(n − 2) + 1

S T

n

T (n) = 2 − 1Fn+1 N

Corollary: Every time we increase by 1, the naive
recursive fib does more work.

(The ratio approaches .)

n

≈ 61.8%

/Fn+1 Fn ≈ 1.618031+ 5√
2

RECURSION WITH BACKTRACKING

How do you solve a maze?

RECURSION WITH BACKTRACKING

How do you solve a maze?

My guess at your mental algorithm:

Try something (move around but don't return to
anywhere you've visited).
If you reach a dead end, go back a bit and reconsider
which way to go at a recent intersection.

An algorithm that formalizes this is recursion with
backtracking.

We make a function that takes:

The maze
The path so far

Its goal is to add one more step to the path, never
backtracking, and call itself to �nish the rest of the path.

But if it hits a dead end, it needs to notice that and
backtrack.

BACKTRACKING
Backtracking is implemented through the return value
of a recursive call.

Recursive call may return:

A solution, or
None, indicating that only dead ends were found.

Algorithm depth_first_maze_solution:

Input: a maze and a path under consideration (partial progress toward solution).

1. If the path is a solution, just return it.

2. Otherwise, enumerate possible next steps that don't go backwards.

3. For each of the possible next steps:
Make a new path by adding this next step to the current one.

Make a recursive call to attempt to complete this path to a solution.

If recursive call returns a solution, we're done. Return it immediately.

(If recursive call returns None, continue the loop.)

4. If we get to this point, every continuation of the path is a dead end. Return None.

DEPTH FIRST
This method is also called a depth �rst search for a path
through the maze.

Here, depth �rst means that we always add a new step
to the path before considering any other changes (e.g.
going back and modifying an earlier step).

MAZE COORDINATES

MAZE API
Let's explore the Maze class from .maze.py

https://github.com/emilydumas/mcs275spring2023/blob/main/samplecode/recursion/maze.py

REFERENCES
Same suggested references as .

REVISION HISTORY
2022-02-11 Last year's lecture on this topic �nalized
2023-02-08 Updated version for spring 2023

Lecture 10

https://www.dumas.io/teaching/2023/spring/mcs275/slides/lecture10.html#/17

