
LECTURE 11
RECURSION VS ITERATION II

MCS 275 Spring 2023
Emily Dumas

LECTURE 11: RECURSION VS ITERATION
II

Reminders and announcements:

Project 1 due Friday at 6pm

Project 2 description coming by Monday

Remember to check the .recursion sample code

https://github.com/emilydumas/mcs275spring2023/tree/main/samplecode/recursion

FIBONACCI TIMING SUMMARY
n=35 n=450

recursive 1.9s > age of universe

memoized recursive <0.001s 0.003s

iterative <0.001s 0.001s

Measured on my old office computer (2015 Intel i7-
6700K) with Python 3.8.5

CALL COUNTS
Another way to measure the cost of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

0 1 2 3 4 5 6

calls

n

CALL COUNTS
Another way to measure the cost of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1

CALL COUNTS
Another way to measure the cost of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1

CALL COUNTS
Another way to measure the cost of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3

CALL COUNTS
Another way to measure the cost of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5

CALL COUNTS
Another way to measure the cost of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5 9

CALL COUNTS
Another way to measure the cost of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5 9 15

CALL COUNTS
Another way to measure the cost of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5 9 15 25

CALL COUNTS
Another way to measure the cost of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5 9 15 25

Fn 0 1 1 2 3 5 8 13

Theorem: Let denote the total number of times
fib is called to compute fib(n). Then

and

T (n)

T (0) = T (1) = 1

T (n) = T (n − 1) + T (n − 2) + 1.

Corollary: .

Proof of corollary: Both sequences and
 have the same first two terms, and obey

the same recursion relation. Induction.

T (n) = 2 − 1Fn+1

T (n)
2 − 1Fn+1

Corollary: .

Proof of corollary: Let . Then
, and

Therefore and have the same first two terms, and
follow the same recursive definition based on the two
previous terms. By induction, the set of such that

 is all of .

T (n) = 2 − 1Fn+1

S(n) = 2 − 1Fn+1

S(0) = S(1) = 1

S(n) = 2 − 1 = 2(+) − 1Fn+1 Fn Fn−1

= (2 − 1) + (2 − 1) + 1Fn Fn−1

= S(n − 1) + S(n − 2) + 1

S T

n

T (n) = 2 − 1Fn+1 N

Corollary: Every time we increase by 1, the naive
recursive fib does more work.

(The ratio approaches .)

n

≈ 61.8%

/Fn+1 Fn ≈ 1.618031+ 5√
2

RECURSION WITH
BACKTRACKING

RECURSION WITH
BACKTRACKING

My guess at your mental algorithm:

Try something (move around but don't return to
anywhere you've visited).
If you reach a dead end, go back a bit and reconsider
which way to go at a recent intersection.

An algorithm that formalizes this is recursion with
backtracking.

We make a function that takes:

The maze
The path so far

Its goal is to add one more step to the path, never
backtracking, and call itself to finish the rest of the
path.

But if it hits a dead end, it needs to notice that and
backtrack.

BACKTRACKING
Backtracking is implemented through the return value
of a recursive call.

Recursive call may return:

A solution, or
None, indicating that only dead ends were found.

Algorithm depth_first_maze_solution:
Input: a maze and a path under consideration (partial progress toward solution).

1. If the path is a solution, just return it.

2. Otherwise, enumerate possible next steps that don't go backwards.

3. For each of the possible next steps:
Make a new path by adding this next step to the current one.

Make a recursive call to attempt to complete this path to a solution.

If recursive call returns a solution, we're done. Return it immediately.

(If recursive call returns None, continue the loop.)

4. If we get to this point, every continuation of the path is a dead end. Return None.

DEPTH FIRST
This method is also called a depth first search for a
path through the maze.

Here, depth first means that we always add a new step
to the path before considering any other changes (e.g.
going back and modifying an earlier step).

MAZE COORDINATES

MAZE API
Let's explore the Maze class from .maze.py

https://github.com/emilydumas/mcs275spring2023/blob/main/samplecode/recursion/maze.py

REFERENCES
Same suggested references as .

REVISION HISTORY
2022-02-11 Last year's lecture on this topic finalized
2023-02-08 Updated version for spring 2023

Lecture 10

https://www.dumas.io/teaching/2023/spring/mcs275/slides/lecture10.html#/17

