
LECTURE 8
VARIADIC FUNCTIONS AND DECORATORS

MCS 275 Spring 2022
Emily Dumas

LECTURE 8: VARIADIC FUNCTIONS AND DECORATORS
Course bulletins:

Project 1 due Fri 4 Feb at 6:00pm central.

Project 1 autograder opens on Monday.

Homework 3 available.

VARIADIC FUNCTIONS
A function is variadic if it can accept a variable number
of arguments. This is general CS terminology.

Python supports these. The syntax

means that the �rst argument goes into variable a, the

second into variable b, and any other arguments are put

into a tuple which is assigned to args

def f(a,b,*args):

VARIADICS AND KEYWORD ARGUMENTS
The syntax

or

puts extra keyword arguments into a dictionary called
kwargs.

It is traditional to use the names args and kwargs, but

it is not required.

def f(a,b,**kwargs):

def f(a,b,*args,**kwargs):

ARGUMENT UNPACKING
Take arguments from a list or tuple:

Take keyword arguments from a dict:

Think of * as "remove the brackets", and ** as "remove
the curly braces".

L = [6,11,16]

f(1,*L) # calls f(1,6,11,16)

d = { "mcs275": "fun", "x": 42 }

f(1,z=0,**d) # calls f(1,z=0,mcs275="fun",x=42)

WHY?
Sometimes you may write a function that needs to pass
most of its arguments on to another function.

FUNCTION ARGUMENTS
Functions in Python can accept functions as arguments.

def dotwice(f):

 """Call function f twice"""

 f()

 f()

A better version works with functions that accept
arguments:

def dotwice(f,*args,**kwargs):

 """Call function f twice (allowing arguments)"""

 f(*args,**kwargs)

 f(*args,**kwargs)

RETURNING FUNCTIONS
Functions in Python can return functions. Often this is
used with a return value that is a de�ned inside the
function body, making a "function factory".

def return_power(n):

 def inner(x): # function inside a function!

 """Raise x to a power"""

 return x**n

 return inner

MODIFYING FUNCTIONS
def return_twice_doer(f):

 """Return a new function which calls f twice"""

 def inner(*args,**kwargs):

 """Call a certain function twice"""

 f(*args,**kwargs)

 f(*args,**kwargs)

 return inner

REPLACING FUNCTIONS
In some cases we might want to replace an existing
function with a modi�ed version of it (e.g. as returned
by some other function).

def g(x):

 """Print the argument with a message"""

 print("Function got value",x)

actually, I wanted to always print that message twice!

g = return_twice_doer(g)

DECORATOR SYNTAX
There is a shorter syntax to replace a function with a
modi�ed version.

is equivalent to

The symbol @modifier (or any @name) before a

function de�nition is called a decorator.

@modifier

def fn(x,y):

 """Function body goes here"""

def fn(x,y):

 """Function body goes here"""

fn = modifier(fn)

RETURNING VALUES
Usually, the inner function of a decorator should return
the value of the (last) call to the argument function.

def return_twice_doer(f):

 """Return a new function which calls f twice"""

 def inner(*args,**kwargs):

 """Call a certain function twice"""

 f(*args,**kwargs)

 return f(*args,**kwargs)

 return inner

DECORATOR ARGUMENTS
Python allows @decorator(arg1,arg2,...).

is equivalent to

In other words, if a decorator is given arguments, then
the name after @ is expected to be a decorator factory.

@dec(2)

def printsq(x):

 print(x*x)

thisdec = dec(2)

@thisdec

def printsq(x):

 print(x*x)

A FEW BUILT-IN DECORATORS
@functools.lru_cache(100) -- Save arguments

and return values for up to 100 recent calls to a
function; reuse stored return values when possible.

Good for expensive operations.*

@classmethod -- Make a method a class method

(callable from the class itself, gets class as �rst
argument). E.g. for alternate constructors.
@atexit.register -- Ask that this function be

called just before the program exits.

* In Python 3.9+ there is also the simpler functools.cache decorator which stores an

unlimited number of past function calls..

MULTIPLE DECORATORS
Each must be on its own line.

replaces f with dec1(dec2(dec3(f))).

So the decorator closest to the function name acts �rst.

@dec1

@dec2

@dec3

def f(x):

 """Function body goes here"""

REFERENCES
See Lutz, Chapter 18 for more about function arguments (including variadic functions).

Beazley & Jones, Chapter 7 has examples of variadic functions.

See Lutz, Chapter 39 for a detailed discussion of Python decorators.

See Beazley & Jones, Chapter 9 for several examples of decorators.

ACKNOWLEDGMENT
I reviewed course materials created by Danko Adrovic (UIC MSCS faculty member) while
preparing a previous version of this lecture.

REVISION HISTORY
2022-01-26 Initial publication

