LECTURE 8

VARIADIC FUNCTIONS AND
DECORATORS

MCS 275 Spring 2022
Emily Dumas

LECTURE 8: VARIADIC FUNCTIONS AND
DECORATORS

Course bulletins:
e Project1dueFri4 Feb at6:00pm central.

e Project 1 autograder opens on Monday.

e Homework 3 available.

VARIADIC FUNCTIONS

A function is variadic if it can accept a variable number
of arguments. This is general CS terminology.

Python supports these. The syntax

def f() :

means that the first argument goes into variable a, the
second into variable b, and any other arguments are
putinto a tuple which is assigned to args

VARIADICS AND KEYWORD
ARGUMENTS

The syntax

def f() :

or

def f() :

puts extra keyword arguments into a dictionary called
kwargs.

It is traditional to use the names args and kwargs,
butitis not required.

ARGUMENT UNPACKING

Take arguments from a list or tuple:

L = [6, ’]
f(1,*L) # calls f£(1,6,11,106)

Take keyword arguments from a dict:

{ "mcs275": "fun", "x": }
(1,z=0,**d) # calls £(1,2z=0,mcs275="fun", x=42)

Think of * as "remove the brackets", and ** as "remove
the curly braces".

WHY?

Sometimes you may write a function that needs to
pass most of its arguments on to another function.

FUNCTION ARGUMENTS

Functions in Python can accept functions as
arguments.

def dotwice (f) :
"""Call function £ twice"""
f£()
£

A better version works with functions that accept
arguments:

def dotwice (f, *args, **kwargs) :
"""Call function f twice (allowing arguments)"""
f(*args, **kwargs)
f(*args, **kwargs)

RETURNING FUNCTIONS

Functions in Python can return functions. Often this is
used with a return value that is a defined inside the
function body, making a "function factory".

def return power (n):
def inner (x): # function inside a function!
"""Raise x to a power"""
return x**n
return inner

MODIFYING FUNCTIONS

def return twice doer (f):
"""Return a new function which calls f twice"""
def inner (*args, **kwargs) :
"""Call a certain function twice"""
f(*args, **kwargs)
f(*args, **kwargs)
return inner

REPLACING FUNCTIONS

In some cases we might want to replace an existing
function with a modified version of it (e.g. as returned
by some other function).

def g(x):
"""Print the argument with a message"""
("Function got value", x)

actually, I wanted to always print that message twice!
g = return twice doer (qg)

DECORATOR SYNTAX

There is a shorter syntax to replace a function with a
modified version.

@modifier
def fn() :
"""Function body goes here"""

IS equivalent to

def £n () =
"""Function body goes here"""
fn = modifier (fn)

The symbol @modifier (orany @name) before a
function definition is called a decorator.

RETURNING VALUES

Usually, the inner function of a decorator should
return the value of the (last) call to the argument
function.

def return twice doer(f):
"""Return a new function which calls £ twice"""
def inner () :
"""Call a certain function twice"""
f(*args, **kwargs)
return f (*args, **kwargs)
return inner

DECORATOR ARGUMENTS

Python allows @decorator (argl, arg2, ...).

Qdec (2)
def printsqg(x) :
(x*x)

IS equivalent to

thisdec = dec (2)
@thisdec

def printsqg(x):
(X*x)

In other words, if a decorator is given arguments, then
the name after @ is expected to be a decorator factory.

A FEW BUILT-IN DECORATORS

e @functools.lru cache(100) --Save
arguments and return values for up to 100 recent
calls to a function; reuse stored return values when

possible. Good for expensive operations.*

e @classmethod -- Make a method a class method
(callable from the class itself, gets class as first
argument). E.g. for alternate constructors.

e Qatexit.register -- Ask that this function be
called just before the program exits.

*In Python 3.9+ there is also the simpler
functools.cache decorator which stores an
unlimited number of past function calls..

MULTIPLE DECORATORS

Each must be on its own line.

ddecl
@dec?
@dec3
def £ (x):
"""Function body goes here"""

replaces £ with decl (dec2 (dec3(f))).

So the decorator closest to the function name acts
first.

REFERENCES

See Lutz, Chapter 18 for more about function arguments (including variadic functions).
Beazley & Jones, Chapter 7 has examples of variadic functions.
See Lutz, Chapter 39 for a detailed discussion of Python decorators.

See Beazley & Jones, Chapter 9 for several examples of decorators.

ACKNOWLEDGMENT

| reviewed course materials created by Danko Adrovic (UIC MSCS faculty member) while
preparing a previous version of this lecture.

REVISION HISTORY

2022-01-26 Initial publication

