
LECTURE 8
VARIADIC FUNCTIONS AND

DECORATORS
MCS 275 Spring 2022

Emily Dumas

LECTURE 8: VARIADIC FUNCTIONS AND
DECORATORS

Course bulletins:
Project 1 due Fri 4 Feb at 6:00pm central.

Project 1 autograder opens on Monday.

Homework 3 available.

VARIADIC FUNCTIONS
A function is variadic if it can accept a variable number
of arguments. This is general CS terminology.

Python supports these. The syntax

means that the first argument goes into variable a, the
second into variable b, and any other arguments are
put into a tuple which is assigned to args

def f(a,b,*args):

VARIADICS AND KEYWORD
ARGUMENTS

The syntax

or

puts extra keyword arguments into a dictionary called
kwargs.

It is traditional to use the names args and kwargs,
but it is not required.

def f(a,b,**kwargs):

def f(a,b,*args,**kwargs):

ARGUMENT UNPACKING
Take arguments from a list or tuple:

Take keyword arguments from a dict:

Think of * as "remove the brackets", and ** as "remove
the curly braces".

L = [6,11,16]

f(1,*L) # calls f(1,6,11,16)

d = { "mcs275": "fun", "x": 42 }

f(1,z=0,**d) # calls f(1,z=0,mcs275="fun",x=42)

WHY?
Sometimes you may write a function that needs to
pass most of its arguments on to another function.

FUNCTION ARGUMENTS
Functions in Python can accept functions as
arguments.

def dotwice(f):

 """Call function f twice"""

 f()

 f()

A better version works with functions that accept
arguments:

def dotwice(f,*args,**kwargs):

 """Call function f twice (allowing arguments)"""

 f(*args,**kwargs)

 f(*args,**kwargs)

RETURNING FUNCTIONS
Functions in Python can return functions. Often this is
used with a return value that is a defined inside the
function body, making a "function factory".

def return_power(n):

 def inner(x): # function inside a function!

 """Raise x to a power"""

 return x**n

 return inner

MODIFYING FUNCTIONS
def return_twice_doer(f):

 """Return a new function which calls f twice"""

 def inner(*args,**kwargs):

 """Call a certain function twice"""

 f(*args,**kwargs)

 f(*args,**kwargs)

 return inner

REPLACING FUNCTIONS
In some cases we might want to replace an existing
function with a modified version of it (e.g. as returned
by some other function).

def g(x):

 """Print the argument with a message"""

 print("Function got value",x)

actually, I wanted to always print that message twice!

g = return_twice_doer(g)

DECORATOR SYNTAX
There is a shorter syntax to replace a function with a
modified version.

is equivalent to

The symbol @modifier (or any @name) before a
function definition is called a decorator.

@modifier

def fn(x,y):

 """Function body goes here"""

def fn(x,y):

 """Function body goes here"""

fn = modifier(fn)

RETURNING VALUES
Usually, the inner function of a decorator should
return the value of the (last) call to the argument
function.

def return_twice_doer(f):

 """Return a new function which calls f twice"""

 def inner(*args,**kwargs):

 """Call a certain function twice"""

 f(*args,**kwargs)

 return f(*args,**kwargs)

 return inner

DECORATOR ARGUMENTS
Python allows @decorator(arg1,arg2,...).

is equivalent to

In other words, if a decorator is given arguments, then
the name after @ is expected to be a decorator factory.

@dec(2)

def printsq(x):

 print(x*x)

thisdec = dec(2)

@thisdec

def printsq(x):

 print(x*x)

A FEW BUILT-IN DECORATORS
@functools.lru_cache(100) -- Save
arguments and return values for up to 100 recent
calls to a function; reuse stored return values when
possible. Good for expensive operations.*

@classmethod -- Make a method a class method
(callable from the class itself, gets class as first
argument). E.g. for alternate constructors.
@atexit.register -- Ask that this function be
called just before the program exits.

* In Python 3.9+ there is also the simpler
functools.cache decorator which stores an
unlimited number of past function calls..

MULTIPLE DECORATORS
Each must be on its own line.

replaces f with dec1(dec2(dec3(f))).

So the decorator closest to the function name acts
first.

@dec1

@dec2

@dec3

def f(x):

 """Function body goes here"""

REFERENCES
See Lutz, Chapter 18 for more about function arguments (including variadic functions).

Beazley & Jones, Chapter 7 has examples of variadic functions.

See Lutz, Chapter 39 for a detailed discussion of Python decorators.

See Beazley & Jones, Chapter 9 for several examples of decorators.

ACKNOWLEDGMENT
I reviewed course materials created by Danko Adrovic (UIC MSCS faculty member) while
preparing a previous version of this lecture.

REVISION HISTORY
2022-01-26 Initial publication

