
LECTURE 5
OBJECT-ORIENTED PROGRAMMING

SUBCLASSES AND INHERITANCE
MCS 275 Spring 2022

Emily Dumas

LECTURE 5: SUBCLASSES AND INHERITANCE
Course bulletins:

Worksheet 2 solutions available.

Homework 2 due at Noon on Tuesday (25 Jan).

THE BIG NEWS
UIC is returning to in person instruction on Monday.

Come to Lecture Center A002 for lectures
Wear a well-fitting mask that fully covers your nose
and mouth
Install Acadly on a smartphone or tablet and bring to
class

ZOOM REMAINS AVAILABLE
Come to lecture via zoom if:

You're sick (even mild non-covid symptoms)
You don't yet meet requirements to return to campus
Your UIC daily pass is not green
A travel disruption or other unpredictable event
makes it difficult for you attend in person

But in the long term, joining via zoom needs to be an
occasional workaround, not a habit.

IMPROVED POINT2 AND VECTOR2
I added new features to our plane module between

lectures. Let's take a tour of the changes:

Can multiply Vector2 by integer or float

abs(Vector2) gives length

Point2 and Vector2 support equality testing

(There are other features we might want in a real-world
application, but this will suffice for now.)

Photo by (CC-BY-SA)Mike Gogulski

https://commons.wikimedia.org/wiki/File:New_cuyama.jpg

INHERITANCE
It is possible to build a class that is derived from an
existing one, so that the new class inherits all the
methods and behavior of the existing class, but can add
new features, too.

If new class B is derived from existing class A in this way,

we say:

B is a subclass of A (or child of A or inherits from A)

A is a superclass of B (or parent of B)

WHY SUBCLASS?
Some common reasons:

To add custom behavior to an existing class
(e.g. a dict that only allows certain kinds of keys)

To avoid code duplication when multiple classes
share some behavior

To formalize relationships between classes

Subclassing should express an "is-a" relationship. Dog
and Cat might be subclasses of Pet.

PYTHON SUBCLASS SYNTAX
Specify a class name to inherit from in the class
definition:

There is a built-in class object that every class inherits

from, even if you don't specify it explicitly.

class ClassName(SuperClassName):

 """Docstring of the subclass"""

 # ... subclass contents go here ...

CLASS HIERARCHIES

Inheritance patterns are often shown in diagrams. Lines
represent inheritance, with the superclass appearing
above the subclass (usually).

LIVE CODING
Let's build a class hierarchy for a simple robot
simulation.

Every type of robot will be a subclass of Bot.

Bot has a position (a Point), boolean attribute

alive, and method update() to advance one time

step.

Subclasses give the robot behavior (e.g. movement).

PLANNED BOT HIERARCHY

PatrolBot walks back and forth.

WanderBot walks about randomly.

DestructBot sits in one place for a while and then

self-destructs.

ROBOT SIMULATION TEMPLATE
We haven't built any of the Bot subclasses yet, but I

have already created:

A barebones module bots containing a class Bot.

This robot sits in one place. In bots.py in the

sample code repository.
A script botsimulation.py to run the simulation

and show it with simple text-based graphics.

SUPER()
In methods of a subclass, super() returns a version of

self that behaves like an instance of the superclass.

super() allows the subclass to call methods of the

superclass even if the subclass overrides them.

FROM
The from keyword can be used to import individual

symbols from a module into the global scope.

So

is equivalent to

Please use from very sparingly!

import mymodule

...

mymodule.useful_function() # module name needed

from mymodule import useful_function

...

useful_function() # no module name needed

REFERENCES
I discussed inheritance in

See Lutz, Chapter 31 for more discussion of inheritance.

Lutz, Chapters 26-32 discuss object-oriented programming.

REVISION HISTORY
2022-01-21 Initial publication

MCS 260 Fall 2021 Lecture 27

https://www.dumas.io/teaching/2021/fall/mcs260/slides/lecture27.html

