
LECTURE 43
GENERATORS

MCS 275 Spring 2022
Emily Dumas

LECTURE 43: GENERATORS
Course bulletins:

Please complete your course evaluations. The
deadline is 11:55pm Sunday.

 due Friday at 6pm.

.

Project 4

Generators demo notebook

https://www.dumas.io/teaching/2022/spring/mcs275/nbview/projects/project4.html
https://www.dumas.io/teaching/2022/spring/mcs275/nbview/samplecode/generators.html

LOOSE END
I've converted the example program
urlreadtext.py to a nicer version fetch.py that

uses argparse.

SEQUENCES
In Python, a sequence is an object containing elements
that can be accessed by a nonnegative integer index.

e.g. list, tuple, str

ITERABLES
An iterable is a more general concept for an object that
can provide items one by one when used in a for loop.

Sequences can do this, but there are other examples:

iterable value

�le line of text

sqlite3.Cursor* row

dict key

range integer

* That's the return type of .execute(...) in sqlite3.

Unlike a sequence, an iterable may not store (or know)
the next item until it is requested.

This is called laziness and can provide signi�cant
advantages.

THE IDEA
Generators are do-it-yourself lazy iterables.

THE RETURN STATEMENT
In a function, return x will:

Destroy all local variables from the function (except
when references to them exist in objects still in
scope)

Return execution to wherever it was when the
function was called

Replace function call with x for the purposes of

evaluation

THE YIELD STATEMENT
When a function call is used as an iterable, the
statement yield x will:

Pause the function

Make x the next value given by the iterable

The next time a value is needed, execution of the
function will continue from where it left off.

COMPARISON WITH PRINT
Imagine you can write a function which will print a
bunch of values (perhaps doing calculations along the
way).

If you change print(x) to yield x, then you get a

function that can be used as an iterable, lazily producing
the same values.

GENERATOR OBJECTS
Behind the scenes, a function containing yield will

return a generator object (just once), which is an
iterable.

It contains the local state of the function, and to provide
a value it runs the function until the next yield.

APPLICATIONS
Ef�cient iterables when items are expensive

Representing in�nite sequences

Retain laziness despite complex logic to determine
next element (e.g. nested loops)

CONVERSION TO A SEQUENCE
The list and tuple constructors accept an iterable.

So if g is a generator object, list(g) will pull all of its

items and put them in a list.

ONE-SHOT
Generator objects are "one-shot" iterables, i.e. you can
only iterate over them once.

Since generator objects are usually return values of
functions, it is typical to have the function call in the
loop that performs iteration.

SINGLE STEPPING
The built-in function next will get the next value from

an iterable (e.g. generator object).

It raises StopIteration if no more items are

available.

DELEGATION
A generator can temporarily delegate to another
generator, i.e. say "take values from this other
generator until it is exhausted".

The syntax is

which is approximately equivalent to:

yield from GENERATOR

for x in GENERATOR:

 yield x

GENERATOR EXPRESSIONS
You can often remove the brackets from a list
comprehension to get a generator comprehension; it
behaves similarly but evaluates lazily.

This won't work in a context that needs a sequence (e.g.
in len(), random.choice(), ...).

Create a list, then sum it

Uses memory proportional to N

sum([x**2 for x in range(1,N+1)])

Create a generator, then sum values

it yields. Memory usage independent

of N.

sum(x**2 for x in range(1,N+1))

REFERENCES
Chapter 20 of Lutz

Chapter 4 of Beazley and Jones

REVISION HISTORY
2022-04-27 Initial publication
2022-04-29 Add link to demo notebook

