
LECTURE 42
ARGPARSE

MCS 275 Spring 2022
Emily Dumas

LECTURE 42: ARGPARSE
Course bulletins:

 is due 6pm Friday.

The project 4 autograder is now open.

Complete your course evaluations!

Project 4

https://www.dumas.io/teaching/2022/spring/mcs275/nbview/projects/project4.html

END STUFF
Blackboard site closes at the end of May.

Homework, worksheets, solutions, etc. will be archived
on this public site:

Lecture videos will not be there, but I will email you the
links to those before Blackboard closes.

Each lecture video is removed 180 days after recording.

https://www.dumas.io/teaching/2022/spring/mcs275/

https://www.dumas.io/teaching/2022/spring/mcs275/

COMMAND LINE INTERFACE
In most settings where programs are developed, basic
familiarity and comfort with working in a shell/terminal
is important.

This is especially true in Unix/Linux, and a lot of
computing involves Unix/Linux in some way.

Today we'll focus on Python scripts that are meant to be
run and used entirely in a shell, i.e. that use a command
line interface or CLI.

EXECUTABLE PYTHON SCRIPTS

and then marking the �le as executable, using shell
command

#!/usr/bin/python3

This example works on most Linux

"""Show Python version and exit"""

import sys

print(sys.version)

chmod +x myscript.py

EXECUTABLE PYTHON SCRIPTS
In Unix/Linux you can make a Python script �le directly
executable by adding an interpreter speci�cation line
(starting #!) at the beginning of the �le

and then marking the �le as executable, using shell
command

#!/usr/bin/env python3

This example works on MacOS and most Linux

"""Show Python version and exit"""

import sys

print(sys.version)

chmod +x myscript.py

OPTIONS AND ARGUMENTS
CLI programs often want to accept:

Required positional arguments (e.g. input �lename,
directory to search, ...)
Options (e.g. iterate 5 times, write to "out.txt"
instead of terminal, use alternate scrape URL, ...)
Flags (e.g. enable verbose output, allow overwriting
an existing �le, ...)

OPTIONS
A con�gurable aspect of the program's operation that
can be set or changed by adding command line
argument(s).

E.g. A scraper might default to waiting 30 seconds
between requests, but allow you to change this on the
command line. Some popular syntaxes:

scrape --delay 5 # my favorite; human readable!

scrape -d5 # terse but ok

scrape -d 5 # also used

scrape --delay=5 # also used

scrape -delay 5 # less common

scrape /d 5 # rare except in Windows

scrape /delay 5 # rare except in Windows

Linux/MacOS examples:
positional argument

cat mcs275/slides/lecture42.html

ls mcs275/public/samplecode

cp lecture_template.html lecture43.html

flags: turn feature on or off

ls -l

ls --human-readable

options

find . -name '*.html' # recursive search for HTML files

USAGE AND HELP
If invalid or insuf�cient arguments are given, a good CLI
program will display a short usage message (explaining
how to use it).

It is best to also offer a help �ag (e.g. --help or -h)

that prints a more detailed usage message and list of
options.

ARGPARSE
Parsing and extracting options, arguments, and �ags
from sys.argv is dif�cult to do well.

But in Python you can (and should) usually avoid writing
command line parsers from scratch.

The standard library module is �exible and

easy to use.

argparse

https://docs.python.org/3/howto/argparse.html

KEY FEATURES
Argument and option type checking
Automatic help and usage messages
Automatic error messages
Allows an option to have both short and long names
(e.g. -h and --help)

Supports many common ways of writing options

Minimal argparse example from the :module docs
import argparse

parser = argparse.ArgumentParser()

parser.add_argument(

 "square",

 help="display a square of a given number",

 type=int # if not specified, default type is string

)

args = parser.parse_args() # parse or show error and exit

print(args.square**2) # arguments and options are attributes of

 # the `args` object returned above

https://docs.python.org/3/howto/argparse.html

REFERENCES

Section 13.3 of Beazley and Jones (Python Cookbook) discusses argparse and gives some
examples.

REVISION HISTORY
2022-04-25 Initial publication

argparse module documentation

https://docs.python.org/3/howto/argparse.html

