
LECTURE 40
PARSING AND SCRAPING HTML

MCS 275 Spring 2022
Emily Dumas

LECTURE 40: PARSING AND SCRAPING
HTML

Course bulletins:

 is due 6pm CDT Friday 29 April.

Please install beautifulsoup4 with

Project 4

python3 -m pip install beautifulsoup4

https://www.dumas.io/teaching/2022/spring/mcs275/nbview/projects/project4.html

GETTING DATA FROM THE WEB
HTML is a language for making documents, meant to
be displayed to humans. Avoid having programs read
HTML if at all possible.

e.g. look for an API that serves the same data in a
structured format (CSV, JSON, ...)

TODAY
We discuss what you can do if there is no API, and you
need to extract information from an HTML document.

Some of these ideas generalize to exploring and
extracting data from other file formats.

HTML PARSING
Level 0: Treat the HTML document as a string and use
search operations (str.find or regexes) to locate
something you care about, like <title>.

HTML is complicated, and this approach is very error-
prone.

HTML PARSING
Level 1: Use a parser that knows how to recognize
start/end tags, attributes, etc., and tell it what to do
when it finds them (e.g. call this function...)

 is in the standard library.

This approach is event-based. You specify functions to
handle things when they are found, but you don't get
an overall picture of the entire document.

html.parser

https://docs.python.org/3/library/html.parser.html

HTML PARSING
Level 2: Use a higher-level HTML data extraction
framework like , , or .

These frameworks create a data structure that
represents the entire document, supporting various
kinds of searching, traversal, and extraction.

Beautiful Soup Scrapy Selenium

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://scrapy.org/
https://selenium-python.readthedocs.io/

DOM
The Document Object Model or DOM is a language-
independent model for representing a HTML
document as a tree of nodes.

Each node represents part of the document, such as a
tag, an attribute, or text appearing inside a tag.

The has rules for for naming,
accessing, and modifying parts of a document.
JavaScript fully implements this specification.

formal specification

https://dom.spec.whatwg.org/

Adapted from DOM illustration by (CC-BY-SA).

<html><head><title>My title</title></head><body><h1>A heading</h1>

Link text</body></html>

Birger Eriksson

https://commons.wikimedia.org/wiki/File:DOM-model.svg

Adapted from DOM illustration by (CC-BY-SA).

<p>I reallylike Python.</p>

Birger Eriksson

https://commons.wikimedia.org/wiki/File:DOM-model.svg

BEAUTIFUL SOUP
This package provides a module called bs4 for turning
HTML into a DOM-like data structure.

Widely used, e.g. at one point Reddit's backend
software used it to select a representative image from
a web page when a URL appeared in a post*.

Requires an HTML parser. We'll use html.parser
from the standard library (slow but always available).

* As of . Perhaps they still use it?2014

https://github.com/reddit/reddit/blob/85f9cff3e2ab9bb8f19b96acd8da4ebacc079f04/r2/r2/lib/media.py

MINIMAL SOUP
Parse HTML file into DOM:

from bs4 import BeautifulSoup

with open("lecture40.html") as fobj:

 soup = BeautifulSoup(fobj,"html.parser")

MINIMAL SOUP
Parse web page into DOM:

Be careful about the
.

from urllib.request import urlopen

from bs4 import BeautifulSoup

with urlopen("https://example.com/") as response:

 soup = BeautifulSoup(response,"html.parser")

ethics of connecting to web
servers from programs

SCRAPING AND SPIDERS
A program that extracts data from HTML is a scraper

A program that visits all pages on a site is a spider.

All forms of automated access should:

Allow the site to prioritize human users.
Limit frequency of requests.
Respect a site's Terms of Service (TOS).
Respect the site's automated access
exclusion file, if they have one.

robots.txt

https://en.wikipedia.org/wiki/Robots_exclusion_standard

MINIMAL SOUP
Parse string into DOM:

from bs4 import BeautifulSoup

soup = BeautifulSoup(

 "<p>That was durian?!</p>",

 "html.parser"

)

BS4 BASICS
str(soup) # show as HTML

soup.prettify() # prettier HTML

soup.title # first (and only) title tag

soup.p # first p tag

soup.find("p") # first p tag (alternative)

soup.p.strong # first strong tag within the first p tag

soup.find_all("a") # list of all a tags

WORKING WITH TAGS
str(tag) # HTML for this tag and everything inside it

tag.name # name of the tag, e.g. "a" or "ul"

tag.attrs # dict of tag's attributes

tag["href"] # get a single attribute

tag.text # All the text nodes inside tag, concatenated

tag.string # If tag has only text inside it, returns that text

 # But if it has other tags as well, returns None

tag.parent # enclosing tag

tag.contents # list of the children of this tag

tag.children # iterable of children of this tag

tag.banana # first descendant banana tag (sub actual tag name!

tag.find(...) # first descendant meeting criteria

tag.find_all(...) # descendants meeting criteria

tag.find_next_sibling(...) # next sibling tag meeting criteria

SEARCHING
Arguments supported by all the find* methods:

Also work with find(), find_next_sibling(),
...

tag.find_all(True) # all descendants

tag.find_all("tagname") # descendants by tag name

tag.find_all(href="https://example.com/") # by attribute

tag.find_all(class_="post") # by class

tag.find_all(re.compile("^fig")) # tag name regex match

tag.find_all("a",limit=15) # first 15 a tags

tag.find_all("a",recursive=False) # all a *children*

SIMULATING CSS
soup.select(SELECTOR) returns a list of tags
that match a CSS selector, e.g.

There are many CSS selectors and functions we
haven't discussed, so this gives a powerful alternative
search syntax.

soup.select(".wide") # all tags of class "wide"

ul tags within divs of class messagebox

soup.select("div.messagebox ul")

all third elements of unordered lists

soup.select("ul > li:nth-of-type(3)")

REFERENCES

The is beautifully clear.

REVISION HISTORY
2022-04-20 Initial publication

urllib documentation

Beautiful Soup documentation

https://docs.python.org/3.8/library/urllib.html
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

