
LECTURE 39
HTTP REQUESTS

MCS 275 Spring 2022
Emily Dumas

LECTURE 39: HTTP REQUESTS
Course bulletins:

 is due 6pm CDT Friday 29 April.

Prepare for Wednesday: Install beautifulsoup4
with

Project 4

python3 -m pip install beautifulsoup4

https://www.dumas.io/teaching/2022/spring/mcs275/nbview/projects/project4.html

SWITCHING SIDES
Recently, we've talked a lot about making HTTP
servers in Python (e.g. web applications).

This week we'll switch to talking about Python as an
HTTP client, parsing HTML, and extracting data
(scraping).

URLS
A Uniform Resource Locator or URL specifies the
location of a "resource", such as a document, a data
file, or a coffee machine.

Basic structure is

Everything after hostname is optional.

Sample URL:

protocol://hostname[:port]/path/filename?nam=val&nam2=val2

https://www.dumas.io/teaching/2022/spring/mcs275/slides/lectur

DECODING A URL

Protocol is HTTPS (which is HTTP over an encrypted
connection)
Hostname is www.dumas.io
Path is
/teaching/2022/spring/mcs275/slides/

Filename is lecture39.html
No query parameters

https://www.dumas.io/teaching/2022/spring/mcs275/slides/lectur

URLLIB
Module can retrieve resources from URLs.

E.g., it can open a file if you give it a file:// URL.

Most often it is used to make HTTP and HTTPS GET
requests, to retrieve web pages from web servers and
data from HTTP APIs.

urllib.request.urlopen(url) retrieves the
resource and returns a file-like object

urllib

https://docs.python.org/3/library/urllib.html

HTTP RESPONSE
Response consists of a numeric status code, some
headers (an associative array), then a body or
payload.

E.g. GET a web page, the HTML will be in the body.

There are ; first digit gives category:

2xx — success
3xx — redirection; more action required (e.g.
moved)
4xx — client error; your request has a problem
5xx — server error; cannot handle this valid request

lots of codes

https://httpstatuses.com/

Formal definition of the response structure is in
.

RFC
2616

https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

PARTS OF A HTTP RESPONSE
Response to GET http://example.com/

PARTS OF A HTTP RESPONSE
Response to GET http://example.com/

HTTP BODY VS HTML BODY
An HTTP request has several parts, the last of which is
the body (an array of bytes).

Often, the body is an HTML document.

An HTML document has several parts, one of which is
the body (contained in the tag <body>).

GET DATA FROM AN API
Use the to get a suggestion of an
activity.

Bored JSON API

import json

from urllib.request import urlopen

with urlopen("https://www.boredapi.com/api/activity") as respo

 data_bytes = response.read() # returns the body

 data = json.loads(data_bytes)

print("Maybe you could... ",data["activity"])

https://www.boredapi.com/

GET A WEB PAGE

This gives the body as a bytes object (an array of
integers in the range 0...255).

If you want a string, you need to know the encoding.

And it might not be HTML! Can check
response.headers.get_content_type()

from urllib.request import urlopen

with urlopen("https://example.com/") as response:

 html = response.read()

GET A WEB PAGE

The encoding is usually specified in the Content-Type
header, but this is not actually required.

from urllib.request import urlopen

with urlopen("https://example.com/") as response:

 html = response.read()

 # Determine encoding from Content-Type header

 # (recommended)

 charset = response.headers.get_content_charset()

 htmlstr = html.decode(charset)

GET A WEB PAGE
from urllib.request import urlopen

with urlopen("https://example.com/") as response:

 html = response.read()

 # If we're sure it is UTF-8

 # (not recommended)

 htmlstr = html.decode("UTF-8")

GETTING DATA FROM THE WEB
HTML is a language for making documents, meant to
be displayed to humans. Avoid having programs read
HTML if at all possible.

Web pages often contain data that might be useful to a
computer program.

The same data is often available in a structured format
meant for consumption by programs, e.g. through an
API that returns a JSON object.

What do you do if there is no API, and you need to
extract information from an HTML document?

Sigh with exasperation, then...

HTML PARSING
Level 0: Treat the HTML document as a string and use
search operations (str.find or regexes) to locate
something you care about, like <title>.

HTML is complicated, and this approach is very error-
prone.

HTML PARSING
Level 1: Use a parser that knows how to recognize
start/end tags, attributes, etc., and tell it what to do
when it finds them (e.g. call this function...)

 is in the standard library.

This approach is event-based. You specify functions to
handle things when they are found, but you don't get
an overall picture of the entire document.

html.parser

https://docs.python.org/3/library/html.parser.html

HTML PARSING
Level 2: Use a higher-level HTML data extraction
framework like , , or .

These frameworks create a data structure that
represents the entire document, supporting various
kinds of searching, traversal, and extraction.

Beautiful Soup Scrapy Selenium

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://scrapy.org/
https://selenium-python.readthedocs.io/

REFERENCES

REVISION HISTORY
2022-04-18 Initial publication
2022-04-20 Correct project 4 link, deadline

The urllib documentation

Examples of using urllib.request

Beautiful Soup home page

MCS 260 Fall 2020 Lecture 34 - Requesting URLs in Python

https://docs.python.org/3.8/library/urllib.html
https://docs.python.org/3.8/library/urllib.request.html#examples
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.dumas.io/teaching/2020/fall/mcs260/slides/lecture34.html#/

