LECTURE 38

WEB APP WRAP-UP

MCS 275 Spring 2022
Emily Dumas

LECTURE 38: WEB APP WRAP-UP

Course bulletins:
e Work on Project 4.

e Project4is due 6pm CDT Friday 29 April

e Autograder (basically QuizBot) opens Monday 25
April.

e Course evaluations open Monday. Please complete!

https://www.dumas.io/teaching/2022/spring/mcs275/nbview/projects/project4.html

IF GEO STRIKE BEGINS MONDAY

| hope UIC will avert a strike by reaching an agreement with GEO.
If strike starts on Monday 18 April, then until it ends:

e MCS 275 lectures move online (zoom) to avoid crossing picket line
e MCS 275 labs won't be held

e Homework collected as usual, grading begins when strike ends

e No TA office hours or email

e |nstructor availability unchanged (office hours, email, discord)

TODAY

This is the last in our contiguous lecture series focused
on writing a Flask+SQLite application.

(We may revisit this topic a bit in the last week.)

WORKSNAP TODO LIST

HTML + CSS mockups

Database

Flask application with worker view

New work order form

Activate "take assignment" button

[1 Activate other buttons

[] Style the submission form

[1 Date/time formatting

[1 Work order status page

[1 Make all actions redirect to natural destinations
[1 DB initialization and connection cleanup

[] Detect and handle errors (e.g. failure to take assignment)

WORKSNAP TODO LIST

HTML + CSS mockups

Database

Flask application with worker view

New work order form

Activate "take assignment" button

Activate other buttons

Style the submission form

[1 Date/time formatting

[1 Work order status page

[1 Make all actions redirect to natural destinations
[1 DB initialization and connection cleanup

[] Detect and handle errors (e.g. failure to take assignment)

WORKSNAP TODO LIST

HTML + CSS mockups

Database

Flask application with worker view

New work order form

Activate "take assignment" button

Activate other buttons

Style the submission form

Date/time formatting

Work order status page

Make all actions redirect to natural destinations
DB initialization and connection cleanup

Detect and handle errors (e.g. failure to take assighment)

ROUTES

e /worker/<name>/ - (GET) worker's view of orders

e /wo/new/ - (GET) form for new order

e /wo/post/ - (POST) form submission destination

e /wo/<int:woid>/ - (GET) work order status

e /wo/<int:woid>/assign_ to/<name>/ - (GET*) take
assignment

e /wo/<int:woid>/unassign from/<name>/ - (GET*)
unassign

* /wo/<int:woid>/complete by/<name>/ - (GET*) mark
complete

* These should really be POST but we would need to use javascript or a different button markup to do it.

LAST INSERTED ROW

After a single-row INSERT, how to get the primary key
of the new row?

last insert rowid();

Implicitly refers to the most-recently executed INSERT on this connection.

https://www.sqlite.org/lang_corefunc.html#last_insert_rowid
https://www.sqlite.org/lang_corefunc.html#last_insert_rowid
https://www.sqlite.org/lang_corefunc.html#last_insert_rowid

DID UPDATE CHANGE ANYTHING?

An UPDATE might match any number of rows (e.g. 0, 1,
50). How can we check the actual number?

changes () ;

Implicitly refers to the most-recently executed UPDATE on this connection.

https://www.sqlite.org/lang_corefunc.html#changes
https://www.sqlite.org/lang_corefunc.html#changes
https://www.sqlite.org/lang_corefunc.html#changes

FLASK FUNCTIONS

All arein the £1ask module:

e redirect (url) - Returning this object from a route will cause
the HTTP server to issue a 302 response code, telling client to load
url instead.

e abort (http error code) - Immediately stop and returna

HTTP error code (usually 400 bad request, 401 not authorized,
403 forbidden, or 404 not found).

RETROSPECTIVE

Some of the things you'd do differently in a "real" application:

e Action history: We have a single column for WO creation time. We should probably log
every action that changes a work order in a separate table.

e Accounts, roles, cookies: login page checks credentials against DB, sets browser cookie.
Auth-required pages check for it, redirect to login page if not found.

e JavaScript: e.g. to check for new messages in real time, post new message without loading
a new page, make buttons perform POST requests without forms.

e Pagination: Links to show next/prev page of messages or posts.

REFERENCES

- Write and test HTML+CSS quickly in browser

REVISION HISTORY

2022-04-15 Initial publication

https://jsfiddle.net/
https://www.w3schools.com/html/
https://www.w3schools.com/css/
https://flask.palletsprojects.com/en/1.1.x/tutorial/

