
LECTURE 38
WEB APP WRAP-UP

MCS 275 Spring 2022
Emily Dumas



LECTURE 38: WEB APP WRAP-UP
Course bulletins:

Work on .

Project 4 is due 6pm CDT Friday 29 April

Autograder (basically QuizBot) opens Monday 25
April.

Course evaluations open Monday. Please complete!

Project 4

https://www.dumas.io/teaching/2022/spring/mcs275/nbview/projects/project4.html


IF GEO STRIKE BEGINS MONDAY
I hope UIC will avert a strike by reaching an agreement with GEO.

If strike starts on Monday 18 April, then until it ends:

MCS 275 lectures move online (zoom) to avoid crossing picket line
MCS 275 labs won't be held
Homework collected as usual, grading begins when strike ends
No TA of�ce hours or email
Instructor availability unchanged (of�ce hours, email, discord)



TODAY
This is the last in our contiguous lecture series focused
on writing a Flask+SQLite application.

(We may revisit this topic a bit in the last week.)



WORKSNAP TODO LIST
☑ HTML + CSS mockups
☑ Database
☑ Flask application with worker view
☑ New work order form
☑ Activate "take assignment" button
☐ Activate other buttons
☐ Style the submission form
☐ Date/time formatting
☐ Work order status page
☐ Make all actions redirect to natural destinations
☐ DB initialization and connection cleanup
☐ Detect and handle errors (e.g. failure to take assignment)



WORKSNAP TODO LIST
☑ HTML + CSS mockups
☑ Database
☑ Flask application with worker view
☑ New work order form
☑ Activate "take assignment" button
☑ Activate other buttons
☑ Style the submission form
☐ Date/time formatting
☐ Work order status page
☐ Make all actions redirect to natural destinations
☐ DB initialization and connection cleanup
☐ Detect and handle errors (e.g. failure to take assignment)



WORKSNAP TODO LIST
☑ HTML + CSS mockups
☑ Database
☑ Flask application with worker view
☑ New work order form
☑ Activate "take assignment" button
☑ Activate other buttons
☑ Style the submission form
☐ Date/time formatting
☐ Work order status page
☐ Make all actions redirect to natural destinations
☐ DB initialization and connection cleanup
☐ Detect and handle errors (e.g. failure to take assignment)



ROUTES
/worker/<name>/ - (GET) worker's view of orders

/wo/new/ - (GET) form for new order

/wo/post/ - (POST) form submission destination

/wo/<int:woid>/ - (GET) work order status

/wo/<int:woid>/assign_to/<name>/ - (GET*) take

assignment

/wo/<int:woid>/unassign_from/<name>/ - (GET*)

unassign

/wo/<int:woid>/complete_by/<name>/ - (GET*) mark

complete

* These should really be POST but we would need to use javascript or a different button markup to do it.



LAST INSERTED ROW
After a single-row INSERT, how to get the primary key

of the new row?

Implicitly refers to the most-recently executed INSERT on this connection.

SELECT last_insert_rowid();

https://www.sqlite.org/lang_corefunc.html#last_insert_rowid
https://www.sqlite.org/lang_corefunc.html#last_insert_rowid
https://www.sqlite.org/lang_corefunc.html#last_insert_rowid


DID UPDATE CHANGE ANYTHING?
An UPDATE might match any number of rows (e.g. 0, 1,

50). How can we check the actual number?

Implicitly refers to the most-recently executed UPDATE on this connection.

SELECT changes();

https://www.sqlite.org/lang_corefunc.html#changes
https://www.sqlite.org/lang_corefunc.html#changes
https://www.sqlite.org/lang_corefunc.html#changes


FLASK FUNCTIONS
All are in the flask module:

redirect(url) - Returning this object from a route will cause

the HTTP server to issue a 302 response code, telling client to load
url instead.

abort(http_error_code) - Immediately stop and return a

HTTP error code (usually 400 bad request, 401 not authorized,
403 forbidden, or 404 not found).



RETROSPECTIVE
Some of the things you'd do differently in a "real" application:

Action history: We have a single column for WO creation time. We should probably log
every action that changes a work order in a separate table.

Accounts, roles, cookies: login page checks credentials against DB, sets browser cookie.
Auth-required pages check for it, redirect to login page if not found.

JavaScript: e.g. to check for new messages in real time, post new message without loading
a new page, make buttons perform POST requests without forms.

Pagination: Links to show next/prev page of messages or posts.



REFERENCES
 - Write and test HTML+CSS quickly in browser

REVISION HISTORY
2022-04-15 Initial publication

js�ddle

HTML tutorial from w3schools

CSS tutorial from w3schools

The Flask tutorial

https://jsfiddle.net/
https://www.w3schools.com/html/
https://www.w3schools.com/css/
https://flask.palletsprojects.com/en/1.1.x/tutorial/



