
LECTURE 38
WEB APP WRAP-UP

MCS 275 Spring 2022
Emily Dumas



LECTURE 38: WEB APP WRAP-UP
Course bulletins:

Work on .

Project 4 is due 6pm CDT Friday 29 April

Autograder (basically QuizBot) opens Monday 25
April.

Course evaluations open Monday. Please complete!

Project 4

https://www.dumas.io/teaching/2022/spring/mcs275/nbview/projects/project4.html


IF GEO STRIKE BEGINS MONDAY
I hope UIC will avert a strike by reaching an agreement with GEO.

If strike starts on Monday 18 April, then until it ends:

MCS 275 lectures move online (zoom) to avoid crossing picket line
MCS 275 labs won't be held
Homework collected as usual, grading begins when strike ends
No TA office hours or email
Instructor availability unchanged (office hours, email, discord)



TODAY
This is the last in our contiguous lecture series focused
on writing a Flask+SQLite application.

(We may revisit this topic a bit in the last week.)



WORKSNAP TODO LIST
☑ HTML + CSS mockups
☑ Database
☑ Flask application with worker view
☑ New work order form
☑ Activate "take assignment" button
☐ Activate other buttons
☐ Style the submission form
☐ Date/time formatting
☐ Work order status page
☐ Make all actions redirect to natural destinations
☐ DB initialization and connection cleanup
☐ Detect and handle errors (e.g. failure to take assignment)



WORKSNAP TODO LIST
☑ HTML + CSS mockups
☑ Database
☑ Flask application with worker view
☑ New work order form
☑ Activate "take assignment" button
☑ Activate other buttons
☑ Style the submission form
☐ Date/time formatting
☐ Work order status page
☐ Make all actions redirect to natural destinations
☐ DB initialization and connection cleanup
☐ Detect and handle errors (e.g. failure to take assignment)



WORKSNAP TODO LIST
☑ HTML + CSS mockups
☑ Database
☑ Flask application with worker view
☑ New work order form
☑ Activate "take assignment" button
☑ Activate other buttons
☑ Style the submission form
☐ Date/time formatting
☐ Work order status page
☐ Make all actions redirect to natural destinations
☐ DB initialization and connection cleanup
☐ Detect and handle errors (e.g. failure to take assignment)



ROUTES
/worker/<name>/ - (GET) worker's view of orders
/wo/new/ - (GET) form for new order
/wo/post/ - (POST) form submission destination
/wo/<int:woid>/ - (GET) work order status
/wo/<int:woid>/assign_to/<name>/ - (GET*) take
assignment
/wo/<int:woid>/unassign_from/<name>/ - (GET*)
unassign
/wo/<int:woid>/complete_by/<name>/ - (GET*) mark
complete

* These should really be POST but we would need to use javascript
or a different button markup to do it.



LAST INSERTED ROW
A�er a single-row INSERT, how to get the primary key
of the new row?

Implicitly refers to the most-recently executed
INSERT on this connection.

SELECT last_insert_rowid();

https://www.sqlite.org/lang_corefunc.html#last_insert_rowid
https://www.sqlite.org/lang_corefunc.html#last_insert_rowid
https://www.sqlite.org/lang_corefunc.html#last_insert_rowid


DID UPDATE CHANGE ANYTHING?
An UPDATE might match any number of rows (e.g. 0, 1,
50). How can we check the actual number?

Implicitly refers to the most-recently executed
UPDATE on this connection.

SELECT changes();

https://www.sqlite.org/lang_corefunc.html#changes
https://www.sqlite.org/lang_corefunc.html#changes
https://www.sqlite.org/lang_corefunc.html#changes


FLASK FUNCTIONS
All are in the flask module:

redirect(url) - Returning this object from a route will cause
the HTTP server to issue a 302 response code, telling client to
load url instead.

abort(http_error_code) - Immediately stop and return a
HTTP error code (usually 400 bad request, 401 not authorized,
403 forbidden, or 404 not found).



RETROSPECTIVE
Some of the things you'd do differently in a "real" application:

Action history: We have a single column for WO creation time. We should probably log
every action that changes a work order in a separate table.

Accounts, roles, cookies: login page checks credentials against DB, sets browser cookie.
Auth-required pages check for it, redirect to login page if not found.

JavaScript: e.g. to check for new messages in real time, post new message without
loading a new page, make buttons perform POST requests without forms.

Pagination: Links to show next/prev page of messages or posts.



REFERENCES
 - Write and test HTML+CSS quickly in browser

REVISION HISTORY
2022-04-15 Initial publication

jsfiddle

HTML tutorial from w3schools

CSS tutorial from w3schools

The Flask tutorial

https://jsfiddle.net/
https://www.w3schools.com/html/
https://www.w3schools.com/css/
https://flask.palletsprojects.com/en/1.1.x/tutorial/



