
LECTURE 37
FORMS

MCS 275 Spring 2022
Emily Dumas

LECTURE 37: FORMS
Course bulletins:

 is due 6pm CDT Friday 29 April.

Part of Homework 13 will ask for a summary of your
Project 4 work thus far (topic choice, etc.). Full credit
will be given as long as you answer the question(s)
fully.

Today is the last day to submit requests for a non-
SQL project 4 topic.

Project 4

https://www.dumas.io/teaching/2022/spring/mcs275/nbview/projects/project4.html

WORKSNAP TODO LIST
☑ HTML mockup
☑ Stylesheet
☑ Learn a bit about Flask
☑ Database schema & test data
☑ Python code to generate worker view HTML from
a database query
☐ Add page to create new work order
☐ Make buttons on worker view page work

FORMS
Interactive elements in an HTML document (

)

 is a nice way to test out form designs (for code that can be public).

text entry,
checkbox, dropdown list, etc.

<form action="https://example.com/formsub/">

 <label for="full">Full name:</label>

 <input type="text" id="full" name="full">

 <label for="nick">Nickname:</label>

 <input type="text" id="nick" name="nick">

 <input type="submit" value="Submit this form">

</form>

js�ddle

https://www.w3schools.com/html/html_form_input_types.asp
https://www.w3schools.com/html/html_form_input_types.asp
https://jsfiddle.net/

INPUTS NAME VS ID
Each form input should have both a name and id

attribute. Usually they are equal, but they have
separate roles:

name is what this value is called when submitted to

the server.
id is used to match an input with its <label>.

TEXTAREA
<input type="text"> is typically for single-line

answers.

Longer text entry (multi-line) should be handled with a
<textarea> tag.

HTTP REQUEST TYPES
GET - load a resource, the only action we've considered

so far.

GET requests are supposed to be idempotent, meaning

repeating the same request multiple times has the
same effect as doing it once.

HTTP REQUEST TYPES
POST - submit data and/or request an action.

POST requests are not expected to be idempotent.

Browsers typically prevent reloading a POST request,

for example.

By default, forms use a GET request and put form data

in the URL.

This is usually a bad idea, and a POST request is more

appropriate.

Easy change: Add method="post" attribute to the

<form> tag.

WHAT FORM GET REQUEST LOOKS LIKE
Form values become query parameters, e.g.

Many ascii characters appear verbatim but others*

become % escape sequences with two hex digits. Flask

decodes these and makes the parameters available as
flask.request.values.get(name).

* The precise encoding scheme is speci�ed in . Python's built-in urllib.parse

module has functions that perform this type of encoding/decoding: urllib.parse.quote

and urllib.parse.unquote. When using Flask, you usually won't call these directly.

https://example.com/formsub/?full=David%20Dumas&nick=deedee

RFC3986

https://tools.ietf.org/html/rfc3986

Form values are made available to the function handling
submission through
flask.request.values.get(name).

Note that a Flask route must explicitly declare that it
accepts POST requests:

from flask import Flask, request

... app setup ...

@app.route('/registernick',methods = ['POST', 'GET'])

def record_fullname_and_nickname():

 print("Received nickname {}".format(

 request.values.get("nick")

))

FLASK FUNCTIONS
All are in the flask module:

redirect(url) - Returning this object from a route will cause

the HTTP server to issue a 302 response code, telling client to load
url instead.

abort(http_error_code) - Immediately stop and return a

HTTP error code (usually 400 bad request, 401 not authorized,
403 forbidden, or 404 not found).

ROUTES
/worker/<name>/ - (GET) worker's view of orders

/wo/new/ - (GET) form for new order

/wo/post/ - (POST) form submission destination

/wo/<int:woid>/ - (GET) work order status

/wo/<int:woid>/assign_to/<name>/ - (GET*) assign work

order to user

/wo/<int:woid>/unassign/ - (GET*) unassign work order

/wo/<int:woid>/complete/ - (GET*) mark work order

complete

* These should really be POST but we would need to use javascript or a different button markup to do it.

REFERENCES
 - Write and test HTML+CSS quickly in browser

REVISION HISTORY
2022-04-13 Initial publication

js�ddle

HTML tutorial from w3schools

CSS tutorial from w3schools

The Flask tutorial

https://jsfiddle.net/
https://www.w3schools.com/html/
https://www.w3schools.com/css/
https://flask.palletsprojects.com/en/1.1.x/tutorial/

