
LECTURE 23
CSV AND JSON

MCS 275 Spring 2022
Emily Dumas

LECTURE 23: CSV AND JSON
Course bulletins:

Homework 8 posted.

 posted. Check it out. Brief discussion in
Monday's lecture.

Project 2 solutions posted. Please read.

Project 2 will be graded by Monday.

Project 3

https://www.dumas.io/teaching/2022/spring/mcs275/nbview/projects/project3.html

INSTALL PILLOW
Next week: Manipulating images with the Python
package Pillow. To prepare, please

Or substitute the correct interpreter name for your
platform.

If you have trouble, check the and
let us know if you don't find a solution there.

python3 -m pip install pillow

install instructions

https://pillow.readthedocs.io/en/stable/installation.html

READING AND WRITING DATA
FILES

READING AND WRITING DATA
FILES

READING AND WRITING DATA
FILES

READING AND WRITING DATA
FILES

CSV
Comma separated values. A text file format like:

Column headings in the first row (usually).

Untyped. Up to reader to figure out
string/float/int/etc.

State,Capital,Population

Kentucky,Frankfort,25527

South Dakota,Pierre,13646

District,Fin-Sub,Chrgbl Fin No,PO Name,Unit Name,Property Address,Cou

Greater Boston,431120-G01,431120,BARRINGTON,MAIN OFFICE,200 MIDDLE HW

Greater Boston,432360-G01,432360,COVENTRY,MAIN OFFICE,1550 NOOSENECK

Greater Boston,434480-G01,434480,HARRISVILLE,MAIN OFFICE,131 HARRISVI

Greater Boston,436020-G01,436020,NEWPORT,MAIN OFFICE,320 THAMES ST ST

Greater Boston,436090-G02,436090,NORTH KINGSTOWN,MAIN OFFICE,7715 POS

Greater Boston,436580-G02,436580,PASCOAG,MAIN OFFICE,35 BRIDGE WAY,PR

Greater Boston,436723-G01,436723,PAWTUCKET,CUMBERLAND BR.,2055 DIAMON

Greater Boston,436720-G03,436720,PAWTUCKET,DARLINGTON,30 MONTICELLO R

Greater Boston,436720-G01,436720,PAWTUCKET,MAIN OFFICE,40 MONTGOMERY

Greater Boston,436720-G01,436720,PAWTUCKET,MAIN OFFICE,40 MONTGOMERY

Greater Boston,436860-G01,436860,PORTSMOUTH,MAIN OFFICE,95 CHASE RD,N

Greater Boston,437140-G07,437140,PROVIDENCE,CORLISS PK. STA & VMF,55

Greater Boston,437140-G07,437140,PROVIDENCE,CORLISS PK. STA & VMF,55

Greater Boston,437178-G01,437178,PROVIDENCE,EAST PROVIDENCE BR.,17 GR

Greater Boston,437166-G01,437166,PROVIDENCE,JOHNSTON BRANCH,1530 ATWO

Greater Boston,437170-G01,437170,PROVIDENCE,OLNEYVILLE STA,100 HARTFO

Greater Boston,437141-G08,437141,PROVIDENCE,P&DC,24 CORLISS ST RM 100

Greater Boston,437141-G08,437141,PROVIDENCE,P&DC,24 CORLISS ST RM 100

Greater Boston,437141-G08,437141,PROVIDENCE,P&DC,24 CORLISS ST RM 100

Greater Boston,438260-G07,438260,WAKEFIELD,MAIN OFFICE,551 KINGSTOWN

Greater Boston,438260-G01,438260,WAKEFIELD,NARRAGANSETT BR.,15 MEMORI

Source: USPS

https://about.usps.com/who/legal/foia/owned-facilities.htm

READING CSV
with open("datafile.csv","r",newline="",encoding="UTF-8") as f

 rdr = csv.DictReader(fp)

 rownum = 1

 for row in rdr: # reader objects are iterable (ONCE!)

 # row is a dict like {"State": "Kentucky", ...}

 print("Row",rownum)

 rownum += 1

 for colname in row:

 print("{}: {}".format(colname,row[colname]))

WRITING CSV
with open("courses.csv","w",newline="",encoding="UTF-8") as fp

 w = csv.DictWriter(fp, fieldnames=["course","instructor"])

 # Write the column headers

 w.writeheader()

 # Now write the rows of data

 w.writerow({"course": "MCS 260",

 "instructor": "Dumas"})

 w.writerow({"course": "MCS 275",

 "instructor": "Dumas"}

WRITING CSV
with open("courses.csv","w",newline="",encoding="UTF-8") as fp

 w = csv.writer(fp)

 # Write the column headers

 w.writerow(["course","instructor"])

 # Now write the rows of data

 w.writerow(["MCS 260","Dumas"])

 w.writerow(["MCS 275","Dumas"])

JSON
JSON stands for JavaScript object notation. It is a
text-based format for typed hierarchical data.

{

 "title": "Fighting robotic wasps",

 "author": "Paolo Cortázar",

 "year": 2026,

 "tags": ["nonfiction","self-help"],

 "checked out": true,

 "avg star rating": 4.89

}

{

 "newsFeedItemList": [

 {

 "title": "Planning and research grants available through IDOT

 "type": "Press Release",

 "date": "Thursday, March 03",

 "year": "2022",

 "description": "SPRINGFIELD - The Illinois Department of Tran

 "thumbnail": "https://www2.illinois.gov/IISNewsImages/rollupi

 "url": "/content/soi/illinois/en/news/press-release.24573.htm

 "altText": ""

 },

 {

 "title": "2021 Marion County Final Multiplier Announced",

 "type": "Press Release",

 "date": "Thursday, March 03",

 "year": "2022",

 "description": "SPRINGFIELD, IL, - Marion County has been iss

 "thumbnail": "https://www2.illinois.gov/IISNewsImages/rollupi

 "url": "/content/soi/illinois/en/news/press-release.24572.htm

 "altText": ""

},

Source: illinois.gov home page

https://www.illinois.gov/

JSON VALUE TYPES
string — must use double quotes.
number — float, int, other? Up to reader.
boolean — lower case names true, false.
null — like Python None.
array — like Python list. Brackets and commas.
object — like Python dict. Curly braces, colons,
and commas. Keys must be strings.

READING JSON

The object returned can be hard to use if you don't
have documentation for the layout of the file. But since
it has keys and values, it is at least explorable.

with open("in.json","r",encoding="UTF-8") as fp:

 val = json.load(fp) # read from file

OR if you have a string

val = json.loads(s)

WRITING JSON
val = {

 "temperature": 451.3,

 "primes": [2,3,5,7,11],

 "awesome": True,

 "starter": "charmander"

 }

with open("out.json","w",encoding="UTF-8") as fp:

 json.dump(val,fp) # save exactly one object to file

OR if you just want the JSON as a string

s = json.dumps(val)

KEY JSON FEATURES
Does not require data to be tabular.
Has excellent standardization and cross-language
support.
Most HTTP APIs (e.g. data portals) return JSON.
Semi-readable and semi-writeable for humans.

Conversion table for Python → JSON

dict → object
list or tuple → array
int or float → number
bool → boolean
None → null

REFERENCES
MCS 260 Fall 2021:

REVISION HISTORY
2021-03-04 Initial publication

Lecture 15: JSON

Lecture 16: CSV

csv module documentation

json module documentation

Awesome JSON data sets

https://dumas.io/teaching/2021/fall/mcs260/slides/lecture15.html
https://dumas.io/teaching/2021/fall/mcs260/slides/lecture16.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/json.html
https://project-awesome.org/jdorfman/awesome-json-datasets

