LECTURE 22

SET AND DEFAULTDICT

MCS 275 Spring 2022
Emily Dumas



LECTURE 22: SET AND DEFAULTDICT

Course bulletins:

e Project 3 (due 18 March) coming soon.



PLAN

e Wrap up trees unit

e Start language features unit



INTEGERSET TIMING

integerset.py has been updated with a script to

test addition and membership test times for 20,000
Integers.



TRAVERSALS

Last time we introduced the preorder, postorder, and
inorder traversals of a binary tree.

The trees module now has methods for each of these.



UNIQUELY DESCRIBING A TREE

Many different binary trees can have the same inorder
traversal.

Many different binary trees can have the same
preorder traversal.

And yet:

Theorem: A binary tree T is uniquely determined by its
inorder and preorder traversals.



LAST WORDS ON BINARY TREES

e BSTs make a lot of data accessible in a few "hops"
from the root.

e They are a good choice for mutable data structures
involving search operations.

e Deletion of a node is an important feature we didn't
implement. (Take MCS 360!)



e Unbalanced trees are less efficient.

Balanced
depth = log,(number of nodes)

MCS 360 usually covers rebalancing operations.



e Unbalanced trees are less efficient.

Unbalanced
depth = number of nodes

MCS 360 usually covers rebalancing operations.



SET

Python's built-in type set represents an unordered
collection of distinct objects.

You can put an object in a set if (and only if) it's allowed
as a key of a dict. For built-in types that usually just
means immutable.

Allowed: bool, int, float, str, tuple

Not allowed: 1ist, set



0 00 0 » U1 © 1 11 12

.discard/
.remove (1
.remove (5

-pop ()

:{4/8/
= set ()

.add (5)
.add (10)

S
S

1)
)
)

X S
print (x)

15,

le,

23,

SET USAGE

42

}



SET OPERATIONS

Binary operations returning new sets:

S | S2

S & S2

S.union (iterable)
S.intersection (iterable)



SET MUTATIONS

Operations that modify a set S based on contents of
another collection.

S.update (iterable)
S.intersection update(iterable)

S.difference update (iterable)



MORE ABOUT SET

set has lots of other features that are described in the
documentation.


https://docs.python.org/3/library/stdtypes.html#set

Python's set is basically a dictionary without values.

For large collections, it is much faster than using a list.

Appropriate whenever order is not important, and
items cannot appear multiple times.



HISTOGRAM

You want to know how many times each character
appears in a string.

hist = dict ()

hist[c] += 1

This won't work. Why?



DEFAULTDICT

Built-in module collections contains aclass
defaultdict that works like a dictionary, but if a key

Is requested that doesn't exist, it creates it and assigns a
default value.

import collections
hist = collections.defaultdict (int)

for ¢ in s:
hist[c] += 1

This works!



The defaultdict constructor takes one argument, a
functiondefault factory.

default factoryiscalledto make default values
for keys when needed.

Common examples with built-in factories:

defaultdict
defaultdict
defaultdict
defaultdict

list) # default value [] as returned by list ()
int) # default value 0, as returned by int ()
float) # default value 0.0, as returned by float ()
str) # default value "", as returned by str()

~_~ A~ o~ —~



REFERENCES

= Problem Solving with Algorithms and Data Structures using Python by Miller and Ranum,
discusses binary trees in Chapter 7.

m | utz discusses sets in Chapter 5, in the subsection "Other Numeric Types" (even
though there is nothing "numeric" about sets).

o Elsewhere:
m Cormen, Leiserson, Rivest, and Stein discusses graph theory and trees in Appendices
B.4 and B.5, and binary search trees in Chapter 12.

REVISION HISTORY

e 2022-03-02 Initial publication


https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/Trees/toctree.html
https://mitpress.mit.edu/books/introduction-algorithms-third-edition




