
LECTURE 22
SET AND DEFAULTDICT

MCS 275 Spring 2022
Emily Dumas

LECTURE 22: SET AND DEFAULTDICT
Course bulletins:

Project 3 (due 18 March) coming soon.

PLAN
Wrap up trees unit

Start language features unit

INTEGERSET TIMING
integerset.py has been updated with a script to
test addition and membership test times for 20,000
integers.

TRAVERSALS
Last time we introduced the preorder, postorder, and
inorder traversals of a binary tree.

The trees module now has methods for each of
these.

UNIQUELY DESCRIBING A TREE
Many different binary trees can have the same inorder
traversal.

Many different binary trees can have the same
preorder traversal.

And yet:

Theorem: A binary tree T is uniquely determined by its
inorder and preorder traversals.

LAST WORDS ON BINARY TREES
BSTs make a lot of data accessible in a few "hops"
from the root.
They are a good choice for mutable data structures
involving search operations.
Deletion of a node is an important feature we didn't
implement. (Take MCS 360!)

Unbalanced trees are less efficient.

MCS 360 usually covers rebalancing operations.

Unbalanced trees are less efficient.

MCS 360 usually covers rebalancing operations.

SET
Python's built-in type set represents an unordered
collection of distinct objects.

You can put an object in a set if (and only if) it's
allowed as a key of a dict. For built-in types that
usually just means immutable.

Allowed: bool, int, float, str, tuple

Not allowed: list, set

SET USAGE
S = { 4, 8, 15, 16, 23, 42 } # Set literal

S = set() # New empty set

S.add(5) # S is {5}

S.add(10) # S is {5,10}

8 in S # False

5 in S # True

S.discard(1) # Does nothing

S.remove(1) # Raises KeyError

S.remove(5) # Now S is {10}

S.pop() # Remove and return one element (unclear which!)

for x in S: # sets are iterable (but no control over order)

 print(x)

SET OPERATIONS
Binary operations returning new sets:

S | S2 # Evaluates to union of sets

S & S2 # Evaluates to intersection of sets

S.union(iterable) # Like | but allows any iterable

S.intersection(iterable) # Like & but allows any iterable

SET MUTATIONS
Operations that modify a set S based on contents of
another collection.

adds elements of iterable to S

S.update(iterable)

remove anything from S that is NOT in the iterable

S.intersection_update(iterable)

remove anything from S that is in the iterable

S.difference_update(iterable)

MORE ABOUT SET
set has lots of other features that are described in the

.documentation

https://docs.python.org/3/library/stdtypes.html#set

Python's set is basically a dictionary without values.

For large collections, it is much faster than using a list.

Appropriate whenever order is not important, and
items cannot appear multiple times.

HISTOGRAM
You want to know how many times each character
appears in a string.

This won't work. Why?

hist = dict()

for c in s:

 hist[c] += 1

DEFAULTDICT
Built-in module collections contains a class
defaultdict that works like a dictionary, but if a
key is requested that doesn't exist, it creates it and
assigns a default value.

This works!

import collections

hist = collections.defaultdict(int)

for c in s:

 hist[c] += 1

The defaultdict constructor takes one argument,
a function default_factory.

default_factory is called to make default values
for keys when needed.

Common examples with built-in factories:
defaultdict(list) # default value [] as returned by list()

defaultdict(int) # default value 0, as returned by int()

defaultdict(float) # default value 0.0, as returned by float()

defaultdict(str) # default value "", as returned by str()

REFERENCES
In optional course texts:

, discusses binary trees in .

Lutz discusses sets in Chapter 5, in the subsection "Other Numeric Types" (even
though there is nothing "numeric" about sets).

Elsewhere:
 discusses graph theory and trees in Appendices

B.4 and B.5, and binary search trees in Chapter 12.

REVISION HISTORY
2022-03-02 Initial publication

Problem Solving with Algorithms and Data Structures using Python by Miller and
Ranum Chapter 7

Cormen, Leiserson, Rivest, and Stein

https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/Trees/toctree.html
https://mitpress.mit.edu/books/introduction-algorithms-third-edition

