
LECTURE 21
BST AND TREE TRAVERSALS

MCS 275 Spring 2022
Emily Dumas



LECTURE 21: BST AND TREE TRAVERSALS
Course bulletins:

Worksheet 8 available.

Project 2 grading underway.

I know project 2 proved to be challenging for many
students.

Project 3 will be posted this week, is due Friday 18
March.



UPDATE BST CLASS
Let's make it so that BST() is considered a valid, empty

tree.



TREEUTIL
I added a module to the trees sample code folder

which can generate random trees. You'll use it in lab this
week.

Documentation of treeutil module

https://github.com/emilydumas/mcs275spring2022/blob/main/samplecode/trees/treeutil.md


INTEGERSET
As a sample application of BST, we can make a class that
stores a set of integers, supporting membership testing
and adding new elements.

Compare alternatives:

Unsorted list - fast to insert, but slow membership test

Sorted list - fast membership test, slow insert



IMPLEMENTATION HIDING
To use BST, you need to know about and work with

Node objects.

In contrast, IntegerSet has an interface based

directly on the values to be stored. It hides the fact that
its implementation uses a BST.



WALKING A TREE
Back to discussing binary trees (not necessarily BST).

For some purposes we need to visit every node in a tree
and perform some action on them.

To do this is to traverse or walk the tree.



NAMED TRAVERSALS
The three most-often used recursive traversals:

preorder - Node, left subtree, then right subtree.

postorder - Left subtree, right subtree, then node.

inorder - Left subtree, node, then right subtree.

Note: They all visit left child before right child.



PREORDER TRAVERSAL

node, left, right



PREORDER TRAVERSAL

node, left, right



PREORDER TRAVERSAL

node, left, right



PREORDER TRAVERSAL

node, left, right



PREORDER TRAVERSAL

node, left, right



PREORDER TRAVERSAL

node, left, right



PREORDER TRAVERSAL

node, left, right



PREORDER TRAVERSAL

node, left, right



PREORDER TRAVERSAL

node, left, right



PREORDER TRAVERSAL
Typical use: Make a copy of the tree.

Insert the keys into an empty BST in this order to
recreate the original tree.





















POSTORDER TRAVERSAL

left, right, node



POSTORDER TRAVERSAL

left, right, node



POSTORDER TRAVERSAL

left, right, node



POSTORDER TRAVERSAL

left, right, node



POSTORDER TRAVERSAL

left, right, node



POSTORDER TRAVERSAL

left, right, node



POSTORDER TRAVERSAL

left, right, node



POSTORDER TRAVERSAL

left, right, node



POSTORDER TRAVERSAL

left, right, node



POSTORDER TRAVERSAL
Typical use: Delete the tree.

If you delete keys in postorder, then you will only ever
be removing nodes without children.





















INORDER TRAVERSAL

left, node, right



INORDER TRAVERSAL

left, node, right



INORDER TRAVERSAL

left, node, right



INORDER TRAVERSAL

left, node, right



INORDER TRAVERSAL

left, node, right



INORDER TRAVERSAL

left, node, right



INORDER TRAVERSAL

left, node, right



INORDER TRAVERSAL

left, node, right



INORDER TRAVERSAL

left, node, right



INORDER TRAVERSAL
Typical use: Turn a BST into a sorted list of keys.



REFERENCES
In optional course texts:

,
discusses binary trees in .

Elsewhere:
 discusses graph theory and trees in Appendices

B.4 and B.5, and binary search trees in Chapter 12.

REVISION HISTORY
2022-02-28 Initial publication

Problem Solving with Algorithms and Data Structures using Python by Miller and Ranum
Chapter 7

Cormen, Leiserson, Rivest, and Stein

https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/Trees/toctree.html
https://mitpress.mit.edu/books/introduction-algorithms-third-edition



