
LECTURE 20
BINARY SEARCH TREES

MCS 275 Spring 2022
Emily Dumas

LECTURE 20: BINARY SEARCH TREES
Course bulletins:

Project 2 due 6pm today

SAMPLE CODE
I've created a new directory in the course sample
code repository.

Live coding examples from the next couple of lectures
will be added there.

trees

https://github.com/emilydumas/mcs275spring2022/tree/main/samplecode/trees

GOAL
Learn about search and insert operations on binary
search trees.

Explore an application to a fast data structure for
storing a set of integers.

BINARY SEARCH TREE (BST)
A binary tree in which:

Nodes have keys that can be compared
The key of a node is greater than or equal to any key
in its left subtree.
The key of a node is less than or equal to any key in
its right subtree.

BINARY TREE

BST

BST

BST

BST

BST

BST

BST

NOT A BST

This "just" is a binary tree with keys.

NOT A BST

This "just" is a binary tree with keys.

NOT A BST

This "just" is a binary tree with keys.

TREE TERMS

TREE TERMS

TREE TERMS

TREE TERMS

TREE TERMS

TREE TERMS

TREE TERMS

TREE TERMS

TREE TERMS

CODING
Let's build a class to represent nodes of a binary tree
that also store keys.

TREEVIS
I provide a module treevis in the sample code
repository that can "pretty print" a tree with the
function treeprint(root).

Challenge: Read the source of treevis and figure out
how it works!

FROM TREE TO BST
Now let's build a subclass of Node to represent a BST.

Desired features:

Insert nodes (maintaining BST property)
Search for nodes by key

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

SEARCH
Given x, find and return a node with key x. Return
None if no such node exists.

INSERT
Given a key, add a node to the tree with that key,
maintaining the BST property.

INSERT
Given a key, add a node to the tree with that key,
maintaining the BST property.

INSERT
Given a key, add a node to the tree with that key,
maintaining the BST property.

INSERT
Given a key, add a node to the tree with that key,
maintaining the BST property.

INSERT
Given a key, add a node to the tree with that key,
maintaining the BST property.

INSERT
Given a key, add a node to the tree with that key,
maintaining the BST property.

INTEGERSET
Let's use this to build a class to store a collection of
integers that supports fast insertion and membership
testing.

IMPLEMENTATION HIDING
IntegerSet has many possible implementations
(e.g. a list, a tree, ...), and a user of the class doesn't
need to know about which one it uses.

REFERENCES
In optional course texts:

, discusses binary trees in .

Elsewhere:
 discusses graph theory and trees in Appendices

B.4 and B.5, and binary search trees in Chapter 12.

REVISION HISTORY
2022-02-24 Initial publication

Problem Solving with Algorithms and Data Structures using Python by Miller and
Ranum Chapter 7

Cormen, Leiserson, Rivest, and Stein

https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/Trees/toctree.html
https://mitpress.mit.edu/books/introduction-algorithms-third-edition

