
LECTURE 19
TREES

MCS 275 Spring 2022
Emily Dumas



LECTURE 19: TREES
Course bulletins:

Project 2 due 6pm central Friday. Autograder open.



PROJECT 2 ADVICE, PART I
One way to write splittings and
splittings_iterative is to use the fact that a
splitting of n can be turned into a splitting of n+1 in
two ways.



PROJECT 2 ADVICE, PART II
I think the easiest way to write
splittings_distinct is to first write
splittings_distinct_into and then have
splittings_distinct call it.

(e.g. splittings_distinct(5) is the same thing
as splittings_distinct_into(5,
[1,2,3,4,5])



RECENTLY
We've talked about some recursive algorithms

NEXT
Recursive data structures!



ALGORITHM
A sequence of instructions that accomplishes a certain
computation (e.g. find the square root of ) or solves a
class of problems (e.g. given a list, find its largest
element).

n



GRAPHS
In mathematics, a graph is a collection of nodes (or
vertices) and edges (which join pairs of nodes).



CONNECTIVITY
A graph is connected if every pair of nodes can be
joined by at least one path.



CONNECTIVITY
A graph is connected if every pair of nodes can be
joined by at least one path.



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



TREE
A tree is a graph where every pair of nodes can be
joined by exactly one path (no more, no less).



Equivalently, a tree is a connected graph with no
loops.



Equivalently, a tree is a connected graph that becomes
disconnected if any edge is removed.

(Exercise: Prove this is an equivalent definition!)



EXAMPLE
The random mazes produced by
maze.PrimRandomMaze(...) can be seen as
trees, with the nodes being the open squares and
edges between nodes if the corresponding squares
share an edge.



EXAMPLE



EXAMPLE



EXAMPLE



EXAMPLE



ROOTS AND DIRECTIONS
The trees considered in CS usually have one node
distinguished, called the root.



There's nothing special about the root except that it is
labeled as such. Any node of a tree could be chosen to
be its root node.



Such rooted trees are usually drawn with the root at
top

and vertices farther from the root successively lower.



Such diagrams look like trees in the natural world.



THAT MAZE AGAIN



THAT MAZE AGAIN



Choosing a root lets us orient all of the edges so they
point away from it.

Hence the usual way of drawing a tree will have these
arrows pointing downward.



Each node (except the root) has an incoming edge,
from its parent (closer to the root).

Each node may have one or more outgoing edges, to
its children (farther from the root).



BINARY TREES
In CS, a binary tree is a (rooted) tree in which every
node has ≤ 2 children, labeled "left" and "right".

Horizontal relative position is used to indicate this
labeling, rather than explicitly writing it on the edges.



BINARY TREES
In CS, a binary tree is a (rooted) tree in which every
node has ≤ 2 children, labeled "left" and "right".

Horizontal relative position is used to indicate this
labeling, rather than explicitly writing it on the edges.



REPRESENTATION
How can we store a tree in Python?

Make a class Node, with attribues left and right
that can be None or other Node objects.



REPRESENTATION
How can we store a tree in Python?

Make a class Node, with attribues left and right
that can be None or other Node objects.



REPRESENTATION
How can we store a tree in Python?

Make a class Node, with attribues left and right
that can be None or other Node objects.



REPRESENTATION
How can we store a tree in Python?

Make a class Node, with attribues left and right
that can be None or other Node objects.



WHY?
We can also store additional information in the nodes
of a binary tree. If present, this is called the key or
value or cargo of a node.

This turns out to be a very efficient data structure for
many purposes. A lot of data can be accessed in a few
steps from the root node.



BINARY SEARCH TREE
Stores numbers or other objects allowing comparison
as node values. Enforce the rule: Anything in the
subtree to the left is smaller or equal. Anything in the
subtree to the right is greater.



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



This allows a natural way to check if a value is present
with a game of "too high / too low".



REFERENCES
In optional course texts:

, discusses binary trees in .

Elsewhere:
 discusses graph theory and trees in Appendices

B.4 and B.5, and binary search trees in Chapter 12.

REVISION HISTORY
2022-02-23 Initial publication

Problem Solving with Algorithms and Data Structures using Python by Miller and
Ranum Chapter 7

Cormen, Leiserson, Rivest, and Stein

https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/Trees/toctree.html
https://mitpress.mit.edu/books/introduction-algorithms-third-edition



