
LECTURE 17
QUICKSORT

MCS 275 Spring 2022
Emily Dumas

LECTURE 17: QUICKSORT
Course bulletins:

Project 2 due 6pm Fri 25 Feb.

Project 2 autograder opens Mon 21 Feb.

Homework 6 posted. (Shorter than usual.)

TRANSFORMATION VS MUTATION
Last time we wrote a mergesort function that acts as a
transformation: A list is given as input, a new sorted list
is returned.

Another approach we could consider is sorting as a
mutation: A list is provided, the function reorders its
items and returns nothing.

IN PLACE
A sorting transformation always uses an amount of
memory that is at least as large as the list. (It needs a
second list to store the output, after all.)

A sort that operates as a mutation has the possibility of
using only a �xed amount of memory to do its work.

Doing so is called an in place sorting method.

QUICKSORT
A recursive in place sorting method that, like
mergesort, is reasonably ef�cient and widely used.

PARTITION
Let's �rst study something weaker than sorting.

Given a list L, let p be the last element of L.

We want to rearrange L so that it looks like:

[items < p, p, items ≥ p]

We say L has been partitioned at p, and we call p the

pivot.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

PARTITION ALGORITHM
Idea: Move all small things to the front.

AFTER PARTITION
The two chunks of the list on either side of the pivot
may not be sorted.

But we could bring each of them closer to being sorted
by partitioning them...

QUICKSORT SUMMARY
Starting with an unsorted list:

If the list has 0 or 1 elements, return immediately.
Otherwise, partition the list.
Quicksort the part of the list before the pivot.
Quicksort the part of the list after the pivot.

It's divide and conquer, but with no merge step. The
hard work is instead in partitioning.

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

QUICKSORT VISUALIZATION

CODING TIME
Let's implement quicksort in Python.

Algorithm quicksort:

Input: list L and indices start and end.

Goal: reorder elements of L so that L[start:end] is sorted.

1. If (end-start) is less than or equal to 1, return immediately.

2. Otherwise, call partition(L) to partition the list, letting m be

the �nal location of the pivot.

3. Call quicksort(L,start,m) and quicksort(L,m+1,end)

to sort the parts of the list on either side of the pivot.

WHY DISCUSS ALGORITHMS?
Python lists have built-in .sort() method. Why talk

about sorting?

1. Study cases of easy-to-explain problems solved in
clever ways.

2. See patterns of thinking that work in other settings.

EVALUATING SORTS
Last time we discussed and implemented mergesort,
developed by von Neumann (1945) and Goldstine
(1947).

Today we discussed quicksort, �rst described by Hoare
(1959) and the simpler partitioning scheme introduced
by Lomuto.

But are these actually good ways to sort a list?

EFFICIENCY
Theorem: If you measure the time cost of mergesort in
any of these terms

Number of comparisons made
Number of assignments (e.g. L[i] = x counts as 1)

Number of Python statements executed

then the cost to sort a list of length is less than
, for some constant that only depends on

which expense measure you chose.

n

Cn log(n) C

ASYMPTOTICALLY OPTIMAL
 is pretty ef�cient for an operation that

needs to look at all elements. It's not linear in , but it
only grows a little faster than linear functions.

Furthermore, is the best possible time for
comparison sort of elements (though different
methods might have better).

Cn log(n)
n n

Cn log(n)
n

C

QUICKSORT
Is quicksort similarly ef�cient?

REFERENCES
Making nice visualizations of sorting algorithms is a cottage industry in CS education.
Some you might like to check out:

 by Linus Lee

 by Alex Macy

Slanted line animated visualizations of and by Mike Bostock

REVISION HISTORY
2022-02-18 Initial publication

2D visualization through color sorting

Animated bar graph visualization of many sorting algorithms

mergesort quicksort

https://dotink.co/posts/visualizing-sorting-algorithms/
https://bl.ocks.org/alexmacy/770f14e11594623320db1270361331dc
https://bl.ocks.org/mbostock/39566aca95eb03ddd526
https://bl.ocks.org/mbostock/e1e1e7e2c360bec054ba

