
LECTURE 14
RECURSION VS ITERATION II

MCS 275 Spring 2022
David Dumas

LECTURE 14: RECURSION VS ITERATION
II

Course bulletins:

Project 1 graded.

Feedback survey open.

Project 2 description coming Monday.

Project 2 due 6pm CST Friday, February 25.

Remember to check the .recursion sample code

https://github.com/daviddumas/mcs275spring2022/tree/master/samplecode/recursion

FIBONACCI TIMING
n=35

recursive 1.9s

iterative <0.001s

Measured on a 4.00Ghz Intel i7-6700K CPU (2015
release date) with Python 3.8.5

FIB CALL GRAPH

Most Fibonacci numbers are computed many times!

FIB CALL GRAPH

Most Fibonacci numbers are computed many times!

MEMOIZATION
fib computes the same terms over and over again.

Instead, let's store all previously computed results,
and use the stored ones whenever possible.

This is called memoization. It only works for pure
functions, i.e. those which always produce the same
return value for any given argument values.

math.sin(...) is pure; random.random() is
not.

MEMOIZING FIB
Let's add a simple memoization feature to our
recursive fib function.

MEMOIZED FIB CALL GRAPH

MEMOIZED FIB CALL GRAPH

FIBONACCI TIMING SUMMARY
n=35 n=450

recursive 1.9s > age of universe

memoized recursive <0.001s 0.003s

iterative <0.001s 0.001s

Measured on a 4.00Ghz Intel i7-6700K CPU (2015
release date) with Python 3.8.5

MEMOIZATION SUMMARY
Recursive functions with multiple self-calls o�en
benefit from memoization.

Memoized version is conceptually similar to an
iterative solution.

Memoization does not alleviate recursion depth limits.

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

0 1 2 3 4 5 6

calls

n

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5 9

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5 9 15

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5 9 15 25

CALL COUNTS
One way to measure the expense of a recursive
function is to count how many times the function is
called.

Let's do this for recursive fib.

n 0 1 2 3 4 5 6

calls 1 1 3 5 9 15 25

Fn 0 1 1 2 3 5 8 13

Theorem: Let denote the total number of times
fib is called to compute fib(n). Then

and

T (n)

T (0) = T (1) = 1

T (n) = T (n − 1) + T (n − 2) + 1.

Corollary: .

Proof of corollary: Let . Then
, and

Therefore and have the same first two terms, and
follow the same recursive definition based on the two
previous terms.

T (n) = 2 − 1Fn+1

S(n) = 2 − 1Fn+1

S(0) = S(1) = 1

S(n) = 2 − 1 = 2(+) − 1Fn+1 Fn Fn−1

= (2 − 1) + (2 − 1) + 1Fn Fn−1

= S(n − 1) + S(n − 2) + 1

S T

Corollary: Every time we increase by 1, the naive
recursive fib does more work.

(The ratio approaches .)

n

≈ 61.8%

/Fn+1 Fn ≈ 1.618031+ 5√
2

RECURSION WITH
BACKTRACKING

RECURSION WITH
BACKTRACKING

My guess at your mental algorithm:

Try something (move around but don't return to
anywhere you've visited).
If you reach a dead end, go back a bit and reconsider
which way to go at a recent intersection.

An algorithm that formalizes this is recursion with
backtracking.

We make a function that takes:

The maze
The path so far

Its goal is to add one more step to the path, never
backtracking, and call itself to finish the rest of the
path.

But if it hits a dead end, it needs to notice that and
backtrack.

BACKTRACKING
Backtracking is implemented through the return value
of a recursive call.

Recursive call may return:

A solution, or
None, indicating that only dead ends were found.

Algorithm depth_first_maze_solution:
Input: a maze and a path under consideration (partial progress toward solution).

1. If the path is a solution, just return it.

2. Otherwise, enumerate possible next steps that don't go backwards.

3. For each of the possible next steps:
Make a new path by adding this next step to the current one.

Make a recursive call to attempt to complete this path to a solution.

If recursive call returns a solution, we're done. Return it immediately.

(If recursive call returns None, continue the loop.)

4. If we get to this point, every continuation of the path is a dead end. Return None.

DEPTH FIRST
This method is also called a depth first search for a
path through the maze.

Here, depth first means that we always add a new step
to the path before considering any other changes (e.g.
going back and modifying an earlier step).

MAZE COORDINATES

REFERENCES
Same suggested references as .

REVISION HISTORY
2021-02-11 Initial publication

Lecture 13

https://www.dumas.io/teaching/2022/spring/mcs275/slides/lecture13.html#/17

