
LECTURE 12
RECURSION

MCS 275 Spring 2022
Emily Dumas

LECTURE 12: RECURSION
Course bulletins:

Homework 4 due Tuesday at Noon CST

Anonymous feedback survey coming this week

Project 1 grading underway, ETA Thursday

RECURSION
In computer science, recursion refers to a method of
solving a problem that depends on solving smaller
versions of the same problem.

Usually, recursion involves a function calling itself.

STRATEGIES USING RECURSION
Divide and conquer: A problem can be split into
pieces; solutions for the pieces can be combined to
the full solution.

e.g. Mergesort
Decrease and conquer: Reduce a problem for a
given input (e.g. n) to the answer for a slightly
smaller input (e.g. n-1) and a bit of extra work.

e.g. Factorial

ITERATION
Recursive solutions are o�en contrasted with iterative
solutions.

Iterative: Loops and local variables keep track of all
state (work to be done, work completed, next ...)
Recursive: Arguments keep track of current state;
call stack stores work in progress; return values
send back results.

Recursive solutions can always be converted to
iterative ones, o�en at the cost of more complex code.

STOP CONDITION
A function that always calls itself will never finish!

Recursion must include some kind of stop condition—
a case in which the function can directly return an
answer instead of calling itself.

TODAY'S EXAMPLES
Factorial
Fibonacci numbers
Paper folding sequence

FACTORIAL
The classic first example of recursion, computing

The argument to the function decreases with each
subsequent call, so it eventually reaches the stop
condition ().

n! = n × (n − 1) × ⋯ × 2 × 1.

n ≤ 1

FIBONACCI
The Fibonacci numbers are defined by

So the sequence begins

The definition immediately suggests a recursive
implementation.

= 0, = 1, and = +F0 F1 Fn Fn−1 Fn−2

0, 1, 1, 2, 3, 5, 8, 13, . . .

PAPER FOLDING SEQUENCE

PAPER FOLDING SEQUENCE

PAPER FOLDING SEQUENCE
Let's use to mean concatenation of binary
sequences, so .

If is a binary sequence, let denote the sequence
with and switched, e.g.

Finally, let denote the sequence in opposite order,
e.g. .

⊕
0110 ⊕ 11 = 011011

A Ā

0 1 = 0001011101¯ ¯¯̄¯̄ ¯̄ ¯̄ ¯̄

A
r

= 0100110010r

PFS(n) = PFS(n − 1) ⊕ 1 ⊕ PFS(n − 1)r¯ ¯¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯̄

REFERENCES
Lutz discusses recursive functions in Chapter 19 (pages 555-559 in the print edition).

 by Deitel and Deitel discusses
recursion in Chapter 11. The online version of this text is freely available to UIC students,
faculty, and staff. (You will first need to with you UIC email.)

The open textbook discusses recursion in
.

Computer Science: An Overview by Brookshear and Brylow discusses recursion in Section
5.5. (This book is o�en an optional text for MCS 260.)

 discusses recursion.

REVISION HISTORY
2022-02-07 Initial publication

Intro to Python for Computer Science and Data Science

log in

Think Python, 2ed, by Allen B. Downey Sections
5.8 to 5.10

Lecture 12 of MCS 275 Spring 2022

https://learning.oreilly.com/library/view/intro-to-python/9780135404799/
https://www.safaribooksonline.com/library/view/temporary-access/?orpq
http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2006.html#sec62
http://greenteapress.com/thinkpython2/html/thinkpython2006.html#sec62
https://dumas.io/teaching/2021/spring/mcs275/slides/lecture12.html

