
LECTURE 10
ERRORS AND DEBUGGING

MCS 275 Spring 2022
Emily Dumas

LECTURE 10: ERRORS AND DEBUGGING
Course bulletins:

Project 1 due Friday at 6pm central

A BUG IN ENVIRONMENTS.PY
The Project 1 starter pack has a bug in
environments.py that makes the simulation
behave slightly differently from the project
description's claims.

It doesn't affect what you need to do, and I'm not
making any changes.

The bug: If one bacterium asks to move to a point P,
and during the same time step, a new bacterium is

NEW UNIT
Two lectures on debugging.

Today: interpreting error messages and basic methods
to fix them

DEBUGGING
Any difference between the expected and actual
behavior of a program is an error or bug. Might stop
the program, might not.

The process of finding and fixing errors in computer
programs is called debugging. It is difficult!

Today we mostly focus on debugging errors that cause
a program to stop.

LINES IN PROGRESS
Functions can call other functions, so at any moment
the Python interpreter may have a number of function
calls in progress.

e.g. in the program above, when line 3 runs, the
function called on line 4 is in progress.

def f(x):

 """Return the square of `x`"""

 return x*x

print("The square of 8 is",f(8))

1

2

3

4

CALL STACK
The function calls currently underway are stored on
the call stack, a data structure maintained by the
interpreter.

The top of the stack is the function actively running;
the others are waiting on this one to finish.

Just below the top is the function that called the one
currently running, and so forth.

UNCAUGHT EXCEPTIONS
The Python interpreter raises exceptions to signal
unexpected conditions. Programs can also raise
exceptions themselves.

Unless caught by a try...except block, raising an
exception ends the program.

When exiting due to an exception, Python prints a
summary of what happened, called a traceback.

Tracebacks contain lots of useful information,
including the call stack.

ANATOMY OF A TRACEBACK

ANATOMY OF A TRACEBACK

ANATOMY OF A TRACEBACK

ANATOMY OF A TRACEBACK

ANATOMY OF A TRACEBACK

ANATOMY OF A TRACEBACK

ANATOMY OF A TRACEBACK

ANATOMY OF A TRACEBACK

ANATOMY OF A TRACEBACK

WHAT'S NOT IN A TRACEBACK
Argument values for each function call

Values of variables involved in any of the lines
shown

Information about when the exception was raised
(e.g. the first time this line ran? the 500th?)

GOAL IN READING A TRACEBACK
Determine where the code's meaning doesn't match
the programmer's intentions.

Usually a change is needed near one of the lines in the
traceback... but which one?

HOW TO USE A TRACEBACK
Generally, read from bottom to top

Note the exception type, and look it up in the if needed

Focus on files you wrote (even if others appear in traceback)

Of those, open the one closest to the bottom in an editor and go
to the line in question

Try to develop error hypothesis consistent with the exception

Check or use help() if the error was in a call to a built-in
function

Move up the traceback if you're stuck

docs

docs

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/index.html

SOME BUILT-IN EXCEPTION
TYPES

...and what they most o�en mean for debugging.

TypeError - Bad argument type, e.g. non-int index

or trying to use indexing on wrong type

or passing the wrong type to a function or operator

You should check the types of the variables
appearing on the line, because something
probably doesn't match your expectations.

["a","b"]["foo"] # list index must be an integer

False[2] # bool doesn't allow indexing

"asdf"**5 # cannot raise str to a power

len(5) # integers don't have a length

ValueError - Function got the right type, but an
inappropriate value

You should check the values of the variables
appearing on the line, because something
probably doesn't match your expectations.

int("space wasps")

IndexError - Item requested by integer index does
not exist

Check logic that chooses the index; does it
account for possibly empty list? Short one?

KeyError - A dictionary was asked for a key that
doesn't exist

Why do you expect this key to exist? Check actual
value of the dict just before that line.

["a","b"][15]

{"a": 260, "b":330}["autumn"]

SyntaxError - Execution couldn't even start because
the program's text is not valid Python code.

O�en a forgotten colon or mismatched
parenthesis, on or just above the indicated line.

ImportError or ModuleNotFoundError- The
requested module could not be imported (or a
requested name wasn't in the module, if using
from)

Typo in module name? Trying to import module
from a file not in the current dir? Try having the
program print os.getcwd().

OSError and - The OS was asked to do
something, but it failed; includes many file-related
errors (e.g. file not found, directory found where file
needed, permission problems, ...)

Look in terminal or file browser at the relevant
file/path. Does it exist? Have the program print
os.getcwd() so you know where it looked, if
you used a relative path or bare filename.

its subclasses

https://docs.python.org/3/library/exceptions.html#exception-hierarchy

DEBUGGING STRATEGIES
So far: I mostly talked about read-only debugging
methods (read and think).

Reality: Debugging is hard. Tracebacks alone o�en
don't give enough information.

Various debugging strategies can be used to help
identify and fix problems.

PRINT DEBUGGING
One of the oldest debugging strategies is to add extra
output to a program.

E.g. print values of arguments and variables just
before the line causing an exception.

Disadvantage: Generally need to remove all those
scattered print() calls when you're done
debugging.

PRINT DEBUGGING REPUTATION
Print debugging is o�en criticized as the refuge of
those who don't know any better.

We'll talk about another method next time, so you will
know better!

But the simplicity and directness of simply printing
more program state is o�en compelling.

Brian Kernighan (Unix co-creator) called print
debugging the “most effective debugging tool” in 1979,
and it remains popular more than 40 years later.

REFERENCES
Lutz has a very short discussion of debugging methods at the end of Chapter 3.

Beazley & Jones discusses some debugging methods in Section 14.12.

REVISION HISTORY
2022-02-02 Initial publication

Hierarchy of Python's built-in exceptions

https://docs.python.org/3/library/exceptions.html#exception-hierarchy

