
Math 549: Differentiable Manifolds I – David Dumas – Fall 2022

Midterm Exam Solutions

(P1) Manifold? Let E ⊂ R3 denote the set of points defined by the equations

x+2x3 + y+ y3 + z = 6

2x3 − y3 = 1

x+ y+2y3 + z = 5

Is E an embedded submanifold of R3? If so, what is its dimension? Whatever your
answer, give a proof.

Solution:

Proposition 1. The set E is an embedded submanifold of R3 of dimension 1.

Proof. Notice that the first equation is the sum of the other two. Thus E can equiva-
lently be described as the set F−1(1,5) where F : R3 → R is the map

F(x,y,z) = (2x3 − y3,x+ y+2y3 + z).

The critical points of this map are points (x,y,z) where the differential

DF =

(
6x2 −3y2 0
1 1+6y2 1

)
has rank less than 2. When x ̸= 0, the first and last columns are linearly independent.
When y ̸= 0 the second and last columns are linearly independent. Thus the only critical
points lie in x = y = 0. Since F(0,0,z) = (0,z), we see that (1,5) is not a critical value.
Thus F−1(1,5) is the preimage of a regular value, hence an embedded submanifold of
dimension dim(R3)−dim(R2) = 1. □

Note: You could still complete the problem even if you didn’t notice the linear depen-
dence between the equations. One way to do that would be to show that G : R3 → R3

defined by G(x,y,z) = (x+2x3 +y+y3 + z,2x3 −y3,x+y+2y3 + z) is a constant rank
map when restricted to R3 \{(0,0,z) | z ∈R}, with rank 2. Then the preimage theorem
for constant rank maps applies, giving the same conclusion as above.

(P2) The problem. Let C and D be two circles in R2 such that the distance between
their centers is larger than the sum of the radii. We can consider C and D as manifolds,
each diffeomorphic to S1. Let F : C×D → S1 be the map defined as follows: F(c,d) is
the unit vector that points in the direction of d−c. This construction is depicted below.
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The map F is smooth (and you don’t need to prove that). What are the possible
values of the rank of the differential dF(c,d)? Does it depend on the point (c,d) or it is
the same everywhere? If the rank is not constant, determine where each possible value
of the rank is realized.

If you prefer, you can solve this problem for a particular pair of circles C and D
satisfying the given conditions. Such a solution, if correct and complete, is eligible for
full credit. However, the problem admits a uniform solution for any pair of circles that
doesn’t involve explicit coordinate calculations.

Solution: This map has 1-dimensional codomain, so the only possible values of the
rank are 0 and 1, with the former corresponding to critical points of F . So the question
could be rephrased in either of these equivalent forms:
• Does F have critical points, and if so, where?
• Are there points where the differential of F is zero, and if so, where?

For a pair of distinct points c,d in the plane, let cd denote the line containing them. We
claim:

Proposition 2. Both ranks 0 and 1 occur for dF. A point (c,d) ∈ C×D is a critical
point of F if and only if the line cd is tangent to both C and D. This gives a bijection
between the set of critical points of F and the set of common tangent lines of C and D.

In fact one can show that there are exactly four such common tangent lines, in a
configuration similar to the one shown below.

There are lots of ways to prove this proposition. To embrace the spirit of the prob-
lem’s suggestion, I’ll present an argument that avoids most explicit calculations. (I
don’t claim this is the shortest possible solution.)
Proof. It is helpful in this problem to identify R2 with C. As usual when treating a
vector space (or open set therein) as a smooth manifold, we can identify each tangent
space with the vector space itself. That is, TzC ≃ C with v ∈ C corresponding to the
velocity vector of the path γ(t) = z+ tv at t = 0.



Consider the map N : C∗ → S1 given by N(z) = z
|z| . This is a submersion, because

the map admits local smooth sections through every point: If z0 = reiθ then the map
S1 → C∗, eit 7→ reit is a section whose image contains z0.

The kernel of dN is therefore a one-dimensional subspace of each tangent space to
C∗. In fact kerdNz is exactly the set of vectors that (considered as elements of C, as
noted above) are real multiples of z. This holds because these vectors form the tangent
space of the embedded 1-dimensional submanifold {rz | r > 0} of C∗ on which N is
constant.

Now let U = C×C \ {(z,z) | z ∈ C} and consider the map G : U → S1 given by
G(z,w) = N(w− z). At each point, the differential dG factors as a composition of the
differential of the map (w,z)→ w− z and dN. Since (w,z)→ w− z is linear, it is equal
to its own differential under our convention of identifying C with its tangent spaces.
Thus kerdG(z,w) is the set of vectors (s, t) such that t − s lies in kerdN(w−z), i.e. the set
of (s, t) such that t − s is in the span (over R) of w− z.

Now returning to the setting of the problem, C and D are embedded submanifolds of
C, and so C×D is an embedded submanifold of C×C. In fact C×D is contained in
U , since C and D are disjoint. The map F : C×D → S1 is the restriction of G to C×D.
Thus, to see whether (c,d) is a critical point of F , we must check whether the subspace
T(c,d)C×D of T(c,d)U is contained in kerdG.

Letting pC and pD denote the centers of C and D, respectively, the tangent space
T(c,d)C×D ≃ TcC⊕TdD consists of pairs (s, t) with s orthogonal to c− pC and t or-
thogonal to d − pD. Thus dF(c,d) vanishes if and only if

(1) (s ⊥ (c− pC) and t ⊥ (d − pD)) =⇒ ((t − s) ∈ span(d − c))

If cd is tangent to both circles, then d − c is a nonzero vector orthogonal to both
c− pC and d − pD (since tangents and radii are orthogonal). Thus c− pC and d − pD
both lie in the 1-dimensional space L⊥, where L = span(d − c). Then s ⊥ (c− pC)
and t ⊥ (d − pD) implies both s and t are orthogonal to L⊥, hence both in L. So
s− t ∈ L = span(d − c). Hence the implication above holds when cd is tangent to both
circles, and such (c,d) give critical points.

Conversely, suppose the implication (1) holds. Apply this implication to (s, t) =
(s0,0) where s0 is nonzero and orthogonal to c− pC. (We can do this since t = 0 is
trivially orthogonal to d− pD.) We conclude (t−s) =−s0 is in the span of d−c. Since
s0 is a tangent vector to C and d − c is parallel to cd, we’ve shown that cd is a tangent
of C. Arguing similarly with (s, t) = (0, t0) one concludes that cd is also tangent to D.

We’ve now characterized critical points as pairs (c,d) with cd a common tangent
line of C and D. Note that a common tangent line ℓ uniquely determines such (c,d)
since c = ℓ∩C and d = ℓ∩D.

Rank 1 is thus achieved since there exist (c,d) ∈C×D with cd not tangent to both
circles; for example take (c,d) on the line joining the centers of C and D. (As an
alternative to such an explicit choice, we could argue that the image of F contains
an open set in S1, hence the image contains a regular value by Sard’s theorem. Any
preimage of such a regular value would be a point (c,d) where dF(c,d) has rank 1.)

Rank 0 is achieved since common tangents exist. A geometric way to see this is to
rotate D about the center of C so that the lowest points on the two circles have the same



y coordinate. This is possible by the intermediate value theorem: The lowest point of
D changes continuously under such rotation, and can be made to be either below or
above the lowest point of C, because the distance between the centers is larger than the
sum of the radii. After this rotation, some line of the form y = y0 is a common tangent.
Rotate that line back to find a common tangent of the original circles. □

Optional aside: Solutions were not required to enumerate the common tangents, and
we will not do so in these solutions. But for the curious I will suggest a way it might
be done without explicit coordinate calculations using algebraic-geometric considera-
tions: Think of R2 as an chart of RP2, and work in RP2 since the answers are simpler
there. Then a circle C is a projective conic—a smooth curve defined in homogeneous
coordinates by a quadratic polynomial. The set of tangent lines to a conic is a subset
C∗ ⊂ (RP2)∗, where (RP2)∗ is the space of all lines in RP2 (equivalently, 2-planes
in R3). In fact, this set of tangents of a conic is itself a conic, i.e. also defined by a
quadratic equation. So finding common tangents amounts to finding the intersections
C∗ ∩D∗ of two projective conics. If we were working over C, then Bézout’s theo-
rem would tell us that the number of intersection points (counted with multiplicity) is
(degC∗)(degD∗) = 2 ·2 = 4. Over R there will in general be fewer intersections, as the
real conics may have non-real intersection points (coming in complex conjugate pairs).
This happens, for example, if C and D are concentric circles. But for C and D as in the
problem all complex points of C∗ ∩D∗ turn out to be real and have multiplicity one.
Thus there are exactly four common tangents, projectively. Finally one must check that
these correspond to lines in the R2 we started with and not just in RP2.

(P3) Reframing. Recall that GL(2,R) is an open subset of Mat2×2(R)≃R4, so it has global

coordinates a,b,c,d corresponding to the entries of
(

a b
c d

)
∈ GL(2,R). This means

that ∂

∂a ,
∂

∂b ,
∂

∂c ,
∂

∂d is a frame for GL(2,R). However, GL(2,R) is also a Lie group,
so it has a frame consisting of left-invariant vector fields. Thus it is possible to write
∂

∂a as a linear combination of left-invariant vector fields, where the coefficients are in
C∞(GL(2,R)). Do so explicitly.

Solution: The problem only asked about ∂

∂a , but it’s natural to do this for the entire
frame ∂

∂a ,
∂

∂b ,
∂

∂c ,
∂

∂d at the same time.

We write a tangent vector to GL(2,R) at
(

a b
c d

)
as a matrix

(
x y
z y

)
, which means

the velocity vector at t = 0 of the path t 7→
(

a b
c d

)
+ t

(
x y
z y

)
(which is in GL(2,R)

for t near 0). Equivalently
(

x y
z y

)
considered as a tangent vector at m =

(
a b
c d

)
means x ∂

∂a

∣∣∣
m
+ y ∂

∂bm+ z ∂

∂cm+ t ∂

∂cm.



Then for m =

(
a b
c d

)
, the map Lm : GL(2,R)→ GL(2,R) is given by

Lm

(
p q
r s

)
=

(
ap+br aq+bs
cp+dr cq+ds

)
This is linear in p,q,r,s, hence equal to its own differential when vectors are expressed
in the the coordinate frame. In particular,

(dLm)I

(
x y
z t

)
=

(
ax+bz ay+bt
cx+dz cy+dt

)
.

(The fact that this differential is taken at the point m = I did not affect the formula.) Let
V a, V b, V c, V d denote the left-invariant vector fields with (V a)I =

∂

∂a

∣∣∣
I

and similarly

for b,c,d. Then for m =

(
a b
c d

)
we have

(V a)m = (dLm)I

(
1 0
0 0

)
=

(
a 0
c 0

)
(V b)m = (dLm)I

(
0 1
0 0

)
=

(
0 a
0 c

)
(V c)m = (dLm)I

(
0 0
1 0

)
=

(
b 0
d 0

)
(V d)m = (dLm)I

(
0 0
0 1

)
=

(
0 b
0 d

)
Equivalently we can write this as

V a = a
∂

∂a
+ c

∂

∂c

V b = a
∂

∂b
+ c

∂

∂d

V c = b
∂

∂a
+d

∂

∂c

V d = b
∂

∂b
+d

∂

∂d

(2)

We can solve this system for ∂

∂a ,
∂

∂b ,
∂

∂c ,
∂

∂d . We find:

∂

∂a
=

1
ad −bc

(dV a − cV c)

∂

∂b
=

1
ad −bc

(
dV b − cV d

)
∂

∂c
=

1
ad −bc

(−bV a +aV c)

∂

∂d
=

1
ad −bc

(
−bV b +aV d

)



Note that 1
ad−bc is a smooth function on GL(2,R).

You might notice that the expressions above look like the cofactor formula for
(

a b
c d

)−1

.

That’s no accident! Indeed, the system of equations (2) says that the two bases { ∂

∂a ,
∂

∂b ,
∂

∂c ,
∂

∂d}
and {V a,V b,V c,V d} as a module over C∞(GL(2,R)) of Vect(M) are related by the
change of basis matrix

a 0 c 0
0 a 0 c
b 0 d 0
0 b 0 d

=

(
aI2×2 cI2×2
bI2×2 d I2×2

)
∈ Mat4×4(C∞(M))

where in these matrices, a denotes the C∞ function on GL(2,R) that takes a 2×2 matrix

to its upper-left entry, and similarly for b,c,d. Thus the inverse of
(

a b
c d

)
(or more

precisely, its transpose) shows up naturally when computing the inverse of this change
of basis.

To think about: How would this problem generalize to GL(3,R)? Would the last
comment—about the cofactor matrix arising in the change of frame—also generalize?


