Math 549: Differentiable Manifolds I – David Dumas – Fall 2022

Homework 4

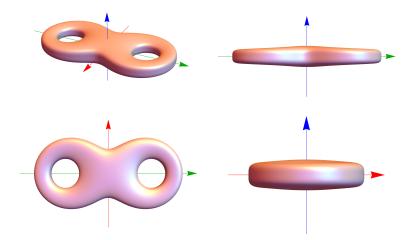
Due Monday, September 19, 2022 at 11:59pm

The same instructions given on homework 1 and 2 apply.

- (P1) Let $\pi : (\mathbb{R}^{n+1} \setminus \{0\}) \to \mathbb{RP}^n$ be the quotient map.
 - (a) Is π an immersion? A submersion?
 - (b) Same questions for the map $\pi|_{\mathbb{S}^n} : \mathbb{S}^n \to \mathbb{RP}^n$ (i.e. the quotient map restricted to the unit sphere)
- (P2) Let *M* be a smooth manifold of dimension *n*. Then $M \times M$, which is a smooth manifold of dimension 2n, is the set of all ordered pairs of points in *M*. The subset $\Delta_M := \{(p,p) \mid p \in M\} \subset M \times M$ is closed, so $M \times M \setminus \Delta_M$ is an open subset of $M \times M$ and thus a smooth manifold as well.

Let $B_2(M)$ denote the set of all 2-element subsets of M. (Equivalently, $B_2(M)$ is the set of all *unordered pairs* of distinct points in M.) Construct a smooth structure on $B_2(M)$ that makes it a manifold of dimension 2n in such a way that the map σ : $(M \times M \setminus \Delta_M) \rightarrow B_2(M)$ given by $\sigma((p,q)) = \{p,q\}$ is a smooth covering map.

(P3) Construct a polynomial P(x, y, z) such that $P^{-1}(0)$ looks as much like the picture below as you can manage, and so that $P : \mathbb{R}^3 \to \mathbb{R}$ is a submersion when restricted to an open set *U* that contains $P^{-1}(0)$. Explain what you consider to be the essential features of the picture that your example realizes, and why it does so.



Note this is four views of a single surface in \mathbb{R}^3 .

Note: In class I said I would ask you to prove that $\pi \circ r_{\sqrt{2}} : \mathbb{R} \to \mathbb{T}^2$ has dense image. That's a nice problem, but I decided against including it on this assignment.