Homework 12

Due Monday, November 21, 2022 at 11:59pm

The same instructions given on homework 1 and 2 apply.

- (P1) Show that each condition below implies an n-dimensional manifold M is orientable.
 - (a) *M* has a Lie group structure.
 - (b) $M = U \cup V$ where U and V are orientable open submanifolds of M and $U \cap V$ is connected.
- (P2) Suppose *N* is a smooth manifold. Recall that a local coordinate system (x_1, \ldots, x_n) on *N* (defined on a set *U*) gives a local coordinate system $(x_1, \ldots, x_n, c_1, \ldots, c_n)$ on *TN* (defined on *TU*) in which $(x_1, \ldots, x_n, c_1, \ldots, c_n)$ represents the point $(p, v) \in TU$ where *p* has coordinates (x_1, \ldots, x_n) and $v = \sum_i c_i \frac{\partial}{\partial x_i} \Big|_{p}$.
 - (a) Show that the transition functions of the atlas for TN obtained this way are orientationpreserving (as maps between open sets in \mathbb{R}^{2n}).
 - (b) Conclude that TN is orientable.
- (P3) Problem 16-2 from Lee, on page 434. (Integrate $xyzdw \wedge dy$ over the Clifford torus.)

Revision history:

• 2022-11-21 Fix header.