Homework 11

Due Monday, November 14, 2022 at 11:59pm

The same instructions given on homework 1 and 2 apply.

- (P1) Let $(e_i)_{i=1...4}$ denote the standard basis of \mathbb{R}^4 and $(\omega_i)_{i=1...4}$ its dual basis. Let $f_i = \sum_{k=1}^i e_k$, so that $(f_i)_{i=1...4}$ is also a basis of \mathbb{R}^4 . Let $(\eta_i)_{i=1...4}$ denote the dual basis of $(f_i)_{i=1...4}$.
 - (a) Write η_k as a linear combination of $(\omega_i)_{i=1...4}$.
 - (b) For any *i*, *j* write $\eta_k \land \eta_\ell \in \bigwedge^2 (\mathbb{R}^4)^*$ as a linear combination of $(\omega_i \land \omega_j)_{1 \le i < j \le 4}$.
 - (c) For any vector $v \in \mathbb{R}^4$ we can form an element $\theta_v \in \bigwedge^3(\mathbb{R}^4)^*$ by defining $\theta_v(a, b, c) = \det(v, a, b, c)$. Does there exist a vector v so that $\theta_v = \eta_2 \land \eta_3 \land \eta_4$? Either find such v or show none exists.
- (P2) Using the inclusion of S^2 into \mathbb{R}^3 , we can identify $T_p S^2$ with the subspace of \mathbb{R}^3 consisting of vectors that are orthogonal to p. Using this identification, consider the 2-form $\omega \in \Omega^2(S^2)$ defined by $\omega_p(v,w) = \det(p,v,w)$. Find an explicit expression for ω in the coordinates (u,v) given by stereographic projection $S^2 \setminus \{(0,0,1)\} \to \mathbb{R}^2_{u,v}$. (That is, the final answer should only involve du, dv, and functions of u and v.)
- (P3) Problem 14-7 in Lee (p375) asks you to compute $F^*(\omega)$ and $d\omega$ in several examples. Do the half of this problem that involves calculating $F^*(\omega)$. (The $d\omega$ part might be assigned next time.)

Revision history:

• 2022-11-12 Change subscript of e in definition of f_i so the summands are not all the same vector.